login
A304827
a(n) = 52*7^n/21 - 16/3 (n>=1).
4
12, 116, 844, 5940, 41612, 291316, 2039244, 14274740, 99923212, 699462516, 4896237644, 34273663540, 239915644812, 1679409513716, 11755866596044, 82291066172340, 576037463206412, 4032262242444916, 28225835697114444, 197580849879801140, 1383065949158608012, 9681461644110256116
OFFSET
1,1
COMMENTS
a(n) is the number of edges in the crystal structure cubic carbon CCC(n), defined in the Baig et al. and in the Gao et al. references.
LINKS
A. Q. Baig, M. Imran, W. Khalid, and M. Naeem, Molecular description of carbon graphite and crystal cubic carbon structures, Canadian J. Chem., 95, 674-686, 2017.
W. Gao, M. K. Siddiqui, M. Naeem and N. A. Rehman, Topological characterization of carbon graphite and crystal cubic carbon structures, Molecules, 22, 1496, 1-12, 2017.
FORMULA
From Colin Barker, May 19 2018: (Start)
G.f.: 4*x*(3 + 5*x) / ((1 - x)*(1 - 7*x)).
a(n) = 8*a(n-1) - 7*a(n-2) for n>2.
(End)
MAPLE
seq(52*7^n*(1/21)-16/3, n = 1..25);
MATHEMATICA
Rest@ CoefficientList[Series[4 x (3 + 5 x)/((1 - x) (1 - 7 x)), {x, 0, 22}], x] (* or *)
LinearRecurrence[{8, -7}, {12, 116}, 22] (* or *)
Array[52*7^#/21 - 16/3 &, 22] (* Michael De Vlieger, May 20 2018 *)
PROG
(PARI) Vec(4*x*(3 + 5*x) / ((1 - x)*(1 - 7*x)) + O(x^30)) \\ Colin Barker, May 19 2018
(GAP) List([1..30], n->52*7^n/21-16/3); # Muniru A Asiru, May 19 2018
CROSSREFS
Cf. A304826.
Sequence in context: A166777 A027285 A238930 * A182671 A154346 A016142
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 19 2018
STATUS
approved