login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of positive special sums of the integer partition with Heinz number n.
2

%I #13 Jul 03 2018 03:24:31

%S 0,1,1,2,1,3,1,3,2,3,1,3,1,3,3,4,1,5,1,5,3,3,1,3,2,3,3,5,1,5,1,5,3,3,

%T 3,4,1,3,3,5,1,7,1,5,5,3,1,3,2,5,3,5,1,7,3,7,3,3,1,3,1,3,3,6,3,7,1,5,

%U 3,5,1,3,1,3,5,5,3,7,1,5,4,3,1,5,3,3,3,7,1,5,3,5,3,3,3,3,1,5,5,8,1,7,1,7,7

%N Number of positive special sums of the integer partition with Heinz number n.

%C A positive special sum of y is a number n > 0 such that exactly one submultiset of y sums to n. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

%H Antti Karttunen, <a href="/A304795/b304795.txt">Table of n, a(n) for n = 1..65537</a>

%e The a(36) = 4 special sums are 1, 3, 5, 6, corresponding to the submultisets (1), (21), (221), (2211), with Heinz numbers 2, 6, 18, 36.

%t primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t uqsubs[y_]:=Join@@Select[GatherBy[Union[Rest[Subsets[y]]],Total],Length[#]===1&];

%t Table[Length[uqsubs[primeMS[n]]],{n,100}]

%o (PARI)

%o up_to = 65537;

%o A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }

%o v056239 = vector(up_to,n,A056239(n));

%o A304795(n) = { my(m=Map(),s,k=0,c); fordiv(n,d,if(!mapisdefined(m,s = v056239[d],&c), mapput(m,s,1), mapput(m,s,c+1))); sumdiv(n,d,(1==mapget(m,v056239[d])))-1; }; \\ _Antti Karttunen_, Jul 02 2018

%Y Cf. A000712, A056239, A108917, A122768, A276024, A284640, A296150, A299701, A299702, A301854, A301855, A301957, A304793, A304796.

%K nonn

%O 1,4

%A _Gus Wiseman_, May 18 2018

%E More terms from _Antti Karttunen_, Jul 02 2018