login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{k>=1} (1 - prime(k)*x^k).
1

%I #4 May 18 2018 19:49:00

%S 1,-2,-3,1,3,18,0,35,-27,-85,-91,-109,-366,118,942,-957,2791,2091,

%T 4855,-1157,-6903,3341,3162,-37034,-46480,-89890,581,131275,-296935,

%U 167543,108671,801491,616017,2441581,-307733,-1864550,4495872,1158228,-2589768,-767646,-21062537

%N Expansion of Product_{k>=1} (1 - prime(k)*x^k).

%C Convolution inverse of A145519.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F G.f.: Product_{k>=1} (1 - A000040(k)*x^k).

%t nmax = 40; CoefficientList[Series[Product[(1 - Prime[k] x^k), {k, 1, nmax}], {x, 0, nmax}], x]

%t a[n_] := a[n] = If[n == 0, 1, Sum[-Sum[d Prime[d]^(k/d), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 40}]

%Y Cf. A000040, A007441, A145519, A147655, A298159.

%K sign

%O 0,2

%A _Ilya Gutkovskiy_, May 18 2018