%I #4 May 18 2018 08:04:45
%S 0,18,103,1321,14831,172574,1999511,23203301,269239457,3124340783,
%T 36256268039,420735862555,4882434935230,56658308917014,
%U 657492489276366,7629885182274593,88541161447587510,1027477755118952667
%N Number of nX4 0..1 arrays with every element unequal to 2, 3, 4, 5 or 6 king-move adjacent elements, with upper left element zero.
%C Column 4 of A304767.
%H R. H. Hardin, <a href="/A304763/b304763.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 9*a(n-1) +32*a(n-2) +28*a(n-3) -438*a(n-4) -1381*a(n-5) -1262*a(n-6) +2558*a(n-7) +11422*a(n-8) +10902*a(n-9) -6871*a(n-10) -32728*a(n-11) -20247*a(n-12) +32404*a(n-13) +39356*a(n-14) -24471*a(n-15) -54052*a(n-16) -1137*a(n-17) +38628*a(n-18) +11519*a(n-19) -11656*a(n-20) +7783*a(n-21) +16422*a(n-22) +130*a(n-23) -5306*a(n-24) +225*a(n-25) -432*a(n-26) -1544*a(n-27) +54*a(n-28) +384*a(n-29) +24*a(n-30) -32*a(n-31) for n>32
%e Some solutions for n=5
%e ..0..1..0..1. .0..1..0..0. .0..0..1..0. .0..1..1..0. .0..1..0..1
%e ..0..1..0..1. .0..1..1..1. .1..1..0..1. .1..1..0..1. .1..1..1..0
%e ..1..1..0..0. .0..0..0..0. .0..1..1..0. .1..0..1..0. .0..1..0..0
%e ..0..1..0..1. .1..1..0..1. .1..0..0..1. .0..1..0..0. .0..0..0..1
%e ..1..0..0..1. .0..1..0..1. .1..0..0..1. .0..1..0..1. .1..1..0..1
%Y Cf. A304767.
%K nonn
%O 1,2
%A _R. H. Hardin_, May 18 2018