login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304708
Number of partitions (d1,d2,...,dm) of n such that d1/1 > d2/2 > ... > dm/m and d1 < d2 < ... < dm.
3
1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 3, 3, 3, 5, 5, 4, 5, 6, 6, 7, 8, 8, 9, 10, 12, 11, 13, 13, 16, 16, 15, 18, 21, 22, 26, 25, 28, 31, 33, 33, 35, 39, 41, 46, 47, 50, 53, 59, 63, 68, 74, 77, 84, 90, 93, 98, 105, 111, 119, 129, 132, 138, 149, 157, 169, 178, 189, 201, 211, 227
OFFSET
0,6
FORMULA
a(n) <= A304707(n).
EXAMPLE
n | Partition (d1,d2,...,dm) | (d1/1, d2/2, ... , dm/m)
--+-----------------------------+-------------------------
1 | (1) | (1)
2 | (2) | (2)
3 | (3) | (3)
4 | (4) | (4)
5 | (5) | (5)
| (2, 3) | (2, 3/2)
6 | (6) | (6)
7 | (7) | (7)
| (3, 4) | (3, 2)
8 | (8) | (8)
| (3, 5) | (3, 5/2)
9 | (9) | (9)
| (4, 5) | (4, 5/2)
| (2, 3, 4) | (2, 3/2, 4/3)
MAPLE
b:= proc(n, r, i, t) option remember; `if`(n=0, 1, `if`(i>n, 0,
b(n, r, i+1, t)+`if`(i/t>=r, 0, b(n-i, i/t, i+1, t+1))))
end:
a:= n-> b(n, n+1, 1$2):
seq(a(n), n=0..80); # Alois P. Heinz, May 17 2018
MATHEMATICA
b[n_, r_, i_, t_] := b[n, r, i, t] = If[n == 0, 1, If[i > n, 0, b[n, r, i + 1, t] + If[i/t >= r, 0, b[n - i, i/t, i + 1, t + 1]]]];
a[n_] := b[n, n + 1, 1, 1];
a /@ Range[0, 80] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 17 2018
STATUS
approved