The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A304677 Total number of tilings of Ferrers-Young diagrams using dominoes and monominoes summed over all partitions of n. 2
 1, 1, 4, 9, 27, 60, 170, 377, 996, 2288, 5715, 13002, 32321, 72864, 175137, 400039, 943454, 2133159, 4993737, 11236889, 25995341, 58480330, 133650880, 299347432, 681346296, 1519116099, 3427954877, 7631479391, 17122129103, 37958987956, 84819325972, 187405201004 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..31. Eric Weisstein's World of Mathematics, Ferrers Diagram Wikipedia, Domino Wikipedia, Domino tiling Wikipedia, Ferrers diagram Wikipedia, Partition (number theory) Wikipedia, Polyomino Wikipedia, Young tableau, Diagrams MAPLE h:= proc(l, f) option remember; local k; if min(l[])>0 then `if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f))) else for k from nops(l) while l[k]>0 by -1 do od; h(subsop(k=1, l), f)+ `if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+ `if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0) fi end: g:= l-> `if`(l=[], 1, h([0\$l[1]], subsop(1=[][], l))): b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1\$n]), b(n, i-1, l) +b(n-i, min(n-i, i), [l[], i])): a:= n-> b(n\$2, []): seq(a(n), n=0..23); CROSSREFS Cf. A304662, A304680. Sequence in context: A114618 A067758 A357752 * A214418 A164342 A034527 Adjacent sequences: A304674 A304675 A304676 * A304678 A304679 A304680 KEYWORD nonn AUTHOR Alois P. Heinz, May 16 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 04:43 EDT 2024. Contains 374441 sequences. (Running on oeis4.)