login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A304677
Total number of tilings of Ferrers-Young diagrams using dominoes and monominoes summed over all partitions of n.
2
1, 1, 4, 9, 27, 60, 170, 377, 996, 2288, 5715, 13002, 32321, 72864, 175137, 400039, 943454, 2133159, 4993737, 11236889, 25995341, 58480330, 133650880, 299347432, 681346296, 1519116099, 3427954877, 7631479391, 17122129103, 37958987956, 84819325972, 187405201004
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Ferrers Diagram
Wikipedia, Domino
Wikipedia, Domino tiling
Wikipedia, Ferrers diagram
Wikipedia, Polyomino
MAPLE
h:= proc(l, f) option remember; local k; if min(l[])>0 then
`if`(nops(f)=0, 1, h(map(x-> x-1, l[1..f[1]]), subsop(1=[][], f)))
else for k from nops(l) while l[k]>0 by -1 do od; h(subsop(k=1, l), f)+
`if`(nops(f)>0 and f[1]>=k, h(subsop(k=2, l), f), 0)+
`if`(k>1 and l[k-1]=0, h(subsop(k=1, k-1=1, l), f), 0)
fi
end:
g:= l-> `if`(l=[], 1, h([0$l[1]], subsop(1=[][], l))):
b:= (n, i, l)-> `if`(n=0 or i=1, g([l[], 1$n]), b(n, i-1, l)
+b(n-i, min(n-i, i), [l[], i])):
a:= n-> b(n$2, []):
seq(a(n), n=0..23);
CROSSREFS
Sequence in context: A114618 A067758 A357752 * A214418 A164342 A034527
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 16 2018
STATUS
approved