OFFSET
0,1
COMMENTS
Consider the Laurent expansion of Gamma(s)Zeta(s) = (s-1)^(-1) + Sum_{n>=0} c(n) (s-1)^n. c(0) is Euler's gamma and -c(1) is this constant.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..10000
Tom M. Apostol, Formulas for higher derivatives of the Riemann zeta function, Mathematics of Computation 44 (1985), p. 223-232.
EXAMPLE
Equals 0.7354670626012241459330726330964847737743769706863880...
MATHEMATICA
RealDigits[(1/6)*(3*EulerGamma^2 + Pi^2)*(EulerGamma^2 - StieltjesGamma[1]), 10, 100][[1]] (* modified by G. C. Greubel, Sep 07 2018 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Peter Luschny, May 16 2018
STATUS
approved