login
A304658
Decimal expansion of (1/6)*(3*gamma(0)^2 + Pi^2)*(gamma(0)^2 - gamma(1)) where gamma(n) are the generalized Stieltjes constants.
1
7, 3, 5, 4, 6, 7, 0, 6, 2, 6, 0, 1, 2, 2, 4, 1, 4, 5, 9, 3, 3, 0, 7, 2, 6, 3, 3, 0, 9, 6, 4, 8, 4, 7, 7, 3, 7, 7, 4, 3, 7, 6, 9, 7, 0, 6, 8, 6, 3, 8, 8, 0, 4, 5, 5, 3, 7, 3, 9, 3, 9, 3, 0, 8, 9, 2, 3, 2, 2, 2, 0, 6, 8, 9, 3, 0, 0, 3, 2, 0, 3, 9, 3, 1, 7, 1, 2
OFFSET
0,1
COMMENTS
Consider the Laurent expansion of Gamma(s)Zeta(s) = (s-1)^(-1) + Sum_{n>=0} c(n) (s-1)^n. c(0) is Euler's gamma and -c(1) is this constant.
LINKS
Tom M. Apostol, Formulas for higher derivatives of the Riemann zeta function, Mathematics of Computation 44 (1985), p. 223-232.
EXAMPLE
Equals 0.7354670626012241459330726330964847737743769706863880...
MATHEMATICA
RealDigits[(1/6)*(3*EulerGamma^2 + Pi^2)*(EulerGamma^2 - StieltjesGamma[1]), 10, 100][[1]] (* modified by G. C. Greubel, Sep 07 2018 *)
CROSSREFS
Cf. A001620.
Sequence in context: A021140 A171036 A351729 * A253298 A155987 A200279
KEYWORD
nonn,cons
AUTHOR
Peter Luschny, May 16 2018
STATUS
approved