login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of different periodic multisets that fit within some normal multiset of weight n.
1

%I #14 Feb 04 2021 16:31:09

%S 0,1,3,7,13,25,44,78,136,242,422,747,1314,2326,4121,7338,13052,23288,

%T 41568,74329,133011,238338,427278,766652,1376258,2472012,4441916,

%U 7984990,14358424,25826779,46465956,83616962,150497816,270917035,487753034,878244512

%N Number of different periodic multisets that fit within some normal multiset of weight n.

%C A multiset is normal if it spans an initial interval of positive integers. It is periodic if its multiplicities have a common divisor greater than 1.

%H Andrew Howroyd, <a href="/A304648/b304648.txt">Table of n, a(n) for n = 1..500</a>

%F From _Andrew Howroyd_, Feb 04 2021: (Start)

%F a(n) = A027941(n) - A303976(n).

%F G.f.: Sum_{d>=2} -mu(d)*x^d/((1 - x - x^d*(2-x))*(1-x)).

%F (End)

%e The a(5) = 13 periodic multisets:

%e (11), (22), (33), (44),

%e (111), (222), (333),

%e (1111), (1122), (1133), (2222), (2233),

%e (11111).

%t allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];

%t Table[Length[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]>1&]],{n,10}]

%o (PARI) seq(n)=Vec(sum(d=2, n, -moebius(d)*x^d/(1 - x - x^d*(2-x)) + O(x*x^n))/(1-x), -n) \\ _Andrew Howroyd_, Feb 04 2021

%Y Cf. A000217, A001597, A018783, A027941, A178472, A210554, A303547, A303709, A303974, A303976.

%K nonn

%O 1,3

%A _Gus Wiseman_, May 15 2018

%E a(12)-a(13) from _Robert Price_, Sep 15 2018

%E Terms a(14) and beyond from _Andrew Howroyd_, Feb 04 2021