login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^(2*k-1)).
2

%I #10 May 19 2018 04:31:31

%S 1,2,2,3,4,5,6,7,9,11,13,15,18,21,24,28,33,38,43,49,56,64,72,81,92,

%T 104,116,130,146,163,181,201,224,249,275,304,337,372,409,450,496,545,

%U 597,654,717,785,857,935,1022,1115,1213,1320,1437,1562,1695,1839,1996,2164,2342,2534

%N Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^(2*k-1)).

%C Partial sums of A000700.

%H Vaclav Kotesovec, <a href="/A304631/b304631.txt">Table of n, a(n) for n = 0..2000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Self-ConjugatePartition.html">Self-Conjugate Partition</a>

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F G.f.: (1/(1 - x))*Product_{k>=1} 1/(1 + (-x)^k).

%F a(n) ~ exp(Pi*sqrt(n/6)) * 3^(1/4) / (Pi * 2^(1/4) * n^(1/4)). - _Vaclav Kotesovec_, May 19 2018

%t nmax = 59; CoefficientList[Series[1/(1 - x) Product[(1 + x^(2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

%t nmax = 59; CoefficientList[Series[1/(1 - x) Product[1/(1 + (-x)^k), {k, 1, nmax}], {x, 0, nmax}], x]

%Y Cf. A000070, A000700, A036469, A218906, A304632.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, May 15 2018