login
Expansion of (1/(1 - x)) * Sum_{k>=0} x^(2*k) / Product_{j=1..2*k} (1 - x^j).
7

%I #27 Jun 27 2021 07:52:15

%S 1,1,2,3,6,9,15,22,34,48,70,97,137,186,255,341,459,605,800,1042,1359,

%T 1751,2256,2879,3672,4645,5869,7367,9234,11508,14319,17730,21916,

%U 26975,33143,40570,49575,60376,73402,88974,107666,129933,156546,188148,225767,270300,323115,385453

%N Expansion of (1/(1 - x)) * Sum_{k>=0} x^(2*k) / Product_{j=1..2*k} (1 - x^j).

%C Partial sums of A027187.

%C From _Gus Wiseman_, Jun 26 2021: (Start)

%C Also the number of integer partitions of 2n+1 with odd greatest part and alternating sum 1, where the alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i, which is equal to the number of odd parts in the conjugate partition. For example, the a(0) = 1 through a(6) = 15 partitions are:

%C 1 111 32 331 54 551 76

%C 11111 3211 3222 3332 5422

%C 1111111 3321 5411 5521

%C 33111 33221 33331

%C 321111 322211 55111

%C 111111111 332111 322222

%C 3311111 332221

%C 32111111 333211

%C 11111111111 541111

%C 3322111

%C 32221111

%C 33211111

%C 331111111

%C 3211111111

%C 1111111111111

%C Also odd-length partitions of 2n+1 with exactly one odd part.

%C (End)

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 16.4.1 "Unrestricted partitions and partitions into m parts", page 347.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = A000070(n) - A306145(n).

%F a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/2)*Pi*sqrt(n)). - _Vaclav Kotesovec_, Aug 20 2018

%t nmax = 47; CoefficientList[Series[1/(1 - x) Sum[x^(2 k)/Product[(1 - x^j), {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]

%t nmax = 47; CoefficientList[Series[(1 + EllipticTheta[4, 0, x])/(2 (1 - x) QPochhammer[x]), {x, 0, nmax}], x]

%t Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Count[#,_?OddQ]==1&]],{n,1,30,2}] (* _Gus Wiseman_, Jun 26 2021 *)

%Y First differences are A027187.

%Y The version for even instead of odd greatest part is A306145.

%Y A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.

%Y A000070 counts partitions with alternating sum 1.

%Y A067661 counts strict partitions of even length.

%Y A103919 counts partitions by sum and alternating sum (reverse: A344612).

%Y A344610 counts partitions by sum and positive reverse-alternating sum.

%Y Cf. A000097, A006330, A027193, A030229, A067659, A236559, A236914, A239829, A239830, A318156, A338907, A344611.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Aug 19 2018