login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1/(1 - x)) * Sum_{k>=0} x^(2*k) / Product_{j=1..2*k} (1 - x^j).
7

%I #27 Jun 27 2021 07:52:15

%S 1,1,2,3,6,9,15,22,34,48,70,97,137,186,255,341,459,605,800,1042,1359,

%T 1751,2256,2879,3672,4645,5869,7367,9234,11508,14319,17730,21916,

%U 26975,33143,40570,49575,60376,73402,88974,107666,129933,156546,188148,225767,270300,323115,385453

%N Expansion of (1/(1 - x)) * Sum_{k>=0} x^(2*k) / Product_{j=1..2*k} (1 - x^j).

%C Partial sums of A027187.

%C From _Gus Wiseman_, Jun 26 2021: (Start)

%C Also the number of integer partitions of 2n+1 with odd greatest part and alternating sum 1, where the alternating sum of a partition (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i, which is equal to the number of odd parts in the conjugate partition. For example, the a(0) = 1 through a(6) = 15 partitions are:

%C 1 111 32 331 54 551 76

%C 11111 3211 3222 3332 5422

%C 1111111 3321 5411 5521

%C 33111 33221 33331

%C 321111 322211 55111

%C 111111111 332111 322222

%C 3311111 332221

%C 32111111 333211

%C 11111111111 541111

%C 3322111

%C 32221111

%C 33211111

%C 331111111

%C 3211111111

%C 1111111111111

%C Also odd-length partitions of 2n+1 with exactly one odd part.

%C (End)

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 16.4.1 "Unrestricted partitions and partitions into m parts", page 347.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%F a(n) = A000070(n) - A306145(n).

%F a(n) ~ exp(Pi*sqrt(2*n/3)) / (2^(5/2)*Pi*sqrt(n)). - _Vaclav Kotesovec_, Aug 20 2018

%t nmax = 47; CoefficientList[Series[1/(1 - x) Sum[x^(2 k)/Product[(1 - x^j), {j, 1, 2 k}], {k, 0, nmax}], {x, 0, nmax}], x]

%t nmax = 47; CoefficientList[Series[(1 + EllipticTheta[4, 0, x])/(2 (1 - x) QPochhammer[x]), {x, 0, nmax}], x]

%t Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Count[#,_?OddQ]==1&]],{n,1,30,2}] (* _Gus Wiseman_, Jun 26 2021 *)

%Y First differences are A027187.

%Y The version for even instead of odd greatest part is A306145.

%Y A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.

%Y A000070 counts partitions with alternating sum 1.

%Y A067661 counts strict partitions of even length.

%Y A103919 counts partitions by sum and alternating sum (reverse: A344612).

%Y A344610 counts partitions by sum and positive reverse-alternating sum.

%Y Cf. A000097, A006330, A027193, A030229, A067659, A236559, A236914, A239829, A239830, A318156, A338907, A344611.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, Aug 19 2018