|
|
A304610
|
|
a(n) = 157*n - 40 (n>=1).
|
|
2
|
|
|
117, 274, 431, 588, 745, 902, 1059, 1216, 1373, 1530, 1687, 1844, 2001, 2158, 2315, 2472, 2629, 2786, 2943, 3100, 3257, 3414, 3571, 3728, 3885, 4042, 4199, 4356, 4513, 4670, 4827, 4984, 5141, 5298, 5455, 5612, 5769, 5926, 6083, 6240
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
a(n) is the second Zagreb index of the polymer B[n,1], defined pictorially in the Bodroza-Pantic et al. reference (Fig. 4).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of B[n,1] is M(B[n,1]; x,y) = 2*(2*n+1)*x^2*y^2 + 4*(n+1)*x^2*y^3 + (13*n-8)*x^3*y^3.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(117 + 40*x) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>2.
(End)
|
|
MAPLE
|
seq(157*n-40, n = 1 .. 40);
|
|
MATHEMATICA
|
Table[157n-40, {n, 40}] (* or *) LinearRecurrence[{2, -1}, {117, 274}, 40] (* Harvey P. Dale, Oct 13 2019 *)
|
|
PROG
|
(PARI) Vec(x*(117 + 40*x) / (1 - x)^2 + O(x^40)) \\ Colin Barker, May 18 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|