login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of minimum dominating sets in the n-antiprism graph.
1

%I #21 Feb 28 2020 08:18:10

%S 2,4,15,12,5,40,14,140,45,5,154,24,546,98,5,384,34,1485,171,5,770,44,

%T 3289,264,5,1352,54,6370,377,5,2170,64,11220,510,5,3264,74,18411,663,

%U 5,4674,84,28595,836,5,6440,94,42504,1029,5,8602,104,60950,1242,5

%N Number of minimum dominating sets in the n-antiprism graph.

%C Sequence extrapolated to n=1 using formula. - _Andrew Howroyd_, May 20 2018

%H Andrew Howroyd, <a href="/A304568/b304568.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimumDominatingSet.html">Minimum Dominating Set</a>

%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,5,0,0,0,0,-10,0,0,0,0,10,0,0,0,0,-5,0,0,0,0,1).

%F From _Andrew Howroyd_, May 20 2018: (Start)

%F a(n) = 5*a(n-5) - 10*a(n-10) + 10*a(n-15) - 5*a(n-20) + a(n-25) for n > 25.

%F a(5*k) = 5, a(5*k+1) = 2*(5*k+1)*(k+1)*(2*k+3)/3, a(5*k+2) = 2*(5*k+2), a(5*k+3) = (5*k+3)*(2*k+5)*(2*k+4)*(2*k+3)/12, a(5*k+4)=(5*k+4)*(2*k+3). (End)

%F G.f.: x*(2 + 4*x + 15*x^2 + 12*x^3 + 5*x^4 + 30*x^5 - 6*x^6 + 65*x^7 - 15*x^8 - 20*x^9 - 26*x^10 - 6*x^11 - 4*x^12 - 7*x^13 + 30*x^14 - 6*x^15 + 14*x^16 + 5*x^17 + 11*x^18 - 20*x^19 - 6*x^21 - x^22 - x^23 + 5*x^24) / ((1 - x)^5*(1 + x + x^2 + x^3 + x^4)^5). - _Colin Barker_, May 22 2018

%t Table[Piecewise[{{5, Mod[n, 5] == 0}, {2 n (4 + n) (13 + 2 n)/75, Mod[n, 5] == 1}, {2 n, Mod[n, 5] == 2}, {n (7 + n) (9 + 2 n) (19 + 2 n)/750, Mod[n, 5] == 3}, {n (7 + 2 n)/5, Mod[n, 5] == 4}}], {n, 30}]

%t LinearRecurrence[{0, 0, 0, 0, 5, 0, 0, 0, 0, -10, 0, 0, 0, 0, 10, 0, 0, 0, 0, -5, 0, 0, 0, 0, 1}, {2, 4, 15, 12, 5, 40, 14, 140, 45, 5, 154, 24, 546, 98, 5, 384, 34, 1485, 171, 5, 770, 44, 3289, 264, 5}, 30]

%t CoefficientList[Series[(5 x^4)/(1 - x^5) + (2 x (2 + 3 x^5))/(-1 + x^5)^2 + (x^3 (-12 - 9 x^5 + x^10))/(-1 + x^5)^3 + (2 (1 + 16 x^5 + 3 x^10))/(-1 + x^5)^4 + (x^2 (-15 - 65 x^5 + 4 x^10 - 5 x^15 + x^20))/(-1 + x^5)^5, {x, 0, 30}], x]

%o (PARI) a(n)={[k->5, k->2*(5*k+1)*(k+1)*(2*k+3)/3, k->2*(5*k+2), k->(5*k+3)*(2*k+5)*(2*k+4)*(2*k+3)/12, k->(5*k+4)*(2*k+3)][n%5+1](n\5)} \\ _Andrew Howroyd_, May 20 2018

%o (PARI) Vec(x*(2 + 4*x + 15*x^2 + 12*x^3 + 5*x^4 + 30*x^5 - 6*x^6 + 65*x^7 - 15*x^8 - 20*x^9 - 26*x^10 - 6*x^11 - 4*x^12 - 7*x^13 + 30*x^14 - 6*x^15 + 14*x^16 + 5*x^17 + 11*x^18 - 20*x^19 - 6*x^21 - x^22 - x^23 + 5*x^24) / ((1 - x)^5*(1 + x + x^2 + x^3 + x^4)^5) + O(x^40)) \\ _Colin Barker_, May 22 2018

%Y Cf. A284699, A290377.

%K nonn,easy

%O 1,1

%A _Eric W. Weisstein_, May 14 2018

%E a(1)-a(2) and terms a(21) and beyond from _Andrew Howroyd_, May 20 2018