login
A304516
a(n) = 192*2^n - 273 (n>=1).
4
111, 495, 1263, 2799, 5871, 12015, 24303, 48879, 98031, 196335, 392943, 786159, 1572591, 3145455, 6291183, 12582639, 25165551, 50331375, 100663023, 201326319, 402652911, 805306095, 1610612463, 3221225199, 6442450671, 12884901615, 25769803503, 51539607279, 103079214831, 206158429935, 412316860143, 824633720559
OFFSET
1,1
COMMENTS
a(n) is the second Zagreb index of the nanostar dendrimer D[n] from the Ghorbani et al. reference.
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of D[n] is M(D[n]; x,y) = 12*(2^n - 1)*x^2*y^2 + 3*(5*2^n - 8)*x^2*y^3 + 3*(2*2^n - 3)*x^3*y^3.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
M. Ghorbani and M. Songhori, Some topological indices of nanostar dendrimers, Iranian J. Math. Chemistry, 1, No. 2, 2010, 57-65.
FORMULA
From Colin Barker, May 15 2018: (Start)
G.f.: 3*x*(37 + 54*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)
MAPLE
seq(192*2^n-273, n = 1 .. 40);
MATHEMATICA
Rest@ CoefficientList[Series[3 x (37 + 54 x)/((1 - x) (1 - 2 x)), {x, 0, 32}], x] (* or *)
LinearRecurrence[{3, -2}, {111, 495}, 32] (* or *)
Array[192*2^# - 273 &, 32] (* Michael De Vlieger, May 15 2018 *)
PROG
(GAP) List([1..40], n->192*2^n-273); # Muniru A Asiru, May 15 2018
(PARI) Vec(3*x*(37 + 54*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 15 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 15 2018
STATUS
approved