login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of s(y) in p(|y|), where s is Schur functions, p is power-sum symmetric functions, y is the integer partition with Heinz number n, and |y| = Sum y_i.
14

%I #17 Oct 05 2018 11:21:14

%S 0,1,1,-1,1,-1,1,1,0,-1,1,1,1,-1,0,-1,1,0,1,1,0,-1,1,-1,0,-1,0,1,1,0,

%T 1,1,0,-1,0,0,1,-1,0,-1,1,0,1,1,0,-1,1,1,0,0,0,1,1,0,0,-1,0,-1,1,0,1,

%U -1,0,-1,0,0,1,1,0,0,1,0,1,-1,0,1,0,0,1,1,0,-1,1,0,0,-1,0,-1,1,0,0,1,0,-1,0,-1,1,0,0,0,1,0,1,-1,0

%N Coefficient of s(y) in p(|y|), where s is Schur functions, p is power-sum symmetric functions, y is the integer partition with Heinz number n, and |y| = Sum y_i.

%C a(1) = 0 by convention.

%C The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

%H Antti Karttunen, <a href="/A304438/b304438.txt">Table of n, a(n) for n = 1..65537</a>

%F a(n) = (-1)^(A056239(n) - A061395(n)) if n belongs to A093641 (Heinz numbers of hooks), 0 otherwise.

%e Sum_{n > 0} p(n) = s(1) + s(2) - s(11) + s(3) - s(21) + s(4) + s(111) - s(31) + s(5) + s(211) + s(6) - s(41) - s(1111) + s(7) + s(8) + s(311) + ...

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t hookQ[n_]:=MatchQ[DeleteCases[FactorInteger[n],{2,_}],{}|{{_,1}}];

%t Table[If[hookQ[n],(-1)^(Total[primeMS[n]]-Max[primeMS[n]]),0],{n,2,100}]

%o (PARI)

%o A000265(n) = (n/2^valuation(n, 2));

%o A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }

%o A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);

%o A304438(n) = if(1==n,0,my(o=A000265(n)); if(((o>1)&&!isprime(o)),0,(-1)^(A056239(n)-A061395(n)))); \\ _Antti Karttunen_, Sep 30 2018

%Y Cf. A000085, A056239, A082733, A093641, A124794, A124795, A153452, A296188, A296561, A300121, A305940, A317552, A317553, A317554.

%K sign

%O 1

%A _Gus Wiseman_, Sep 14 2018

%E More terms from _Antti Karttunen_, Sep 30 2018