Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Sep 21 2022 23:27:27
%S 1,1,481,2246281,43087884081,2331601789103231,287133439746933073357,
%T 69929721774643572422651223,30496192503451926066104677123329,
%U 22113985380962062942048847693898939310,25177466100486219354624677349405490885006591,42994825404638061265611776726882581676486680632128
%N O.g.f. A(x) satisfies: [x^n] exp( n^5 * x ) / A(x) = 0 for n>0.
%C It is conjectured that the coefficients of o.g.f. A(x) consist entirely of integers.
%C Equals row 5 of table A304320.
%C O.g.f. A(x) = 1/(1 - x*B(x)), where B(x) is the o.g.f. of A304395.
%C Logarithmic derivative of o.g.f. A(x), A'(x)/A(x), equals o.g.f. of A304315.
%C Conjecture: given o.g.f. A(x), the coefficient of x^n in A'(x)/A(x) enumerates the connected n-state finite automata with 5 inputs.
%H Paul D. Hanna, <a href="/A304325/b304325.txt">Table of n, a(n) for n = 0..200</a>
%F a(n) ~ sqrt(1-c) * 5^(5*n) * n^(4*n - 1/2) / (sqrt(2*Pi) * c^n * (5-c)^(4*n) * exp(4*n)), where c = -LambertW(-5*exp(-5)). - _Vaclav Kotesovec_, Aug 31 2020
%e O.g.f.: A(x) = 1 + x + 481*x^2 + 2246281*x^3 + 43087884081*x^4 + 2331601789103231*x^5 + 287133439746933073357*x^6 + 69929721774643572422651223*x^7 + ...
%e ILLUSTRATION OF DEFINITION.
%e The table of coefficients of x^k/k! in exp(n^5*x) / A(x) begins:
%e n=0: [1, -1, -960, -13471920, -1033995878400, -279781615181250000, ...];
%e n=1: [1, 0, -961, -13474802, -1034049771843, -279786785295370804, ...];
%e n=2: [1, 31, 0, -13534384, -1035725264896, -279947192760516048, ...];
%e n=3: [1, 242, 57603, 0, -1044001318107, -281045183102366562, ...];
%e n=4: [1, 1023, 1045568, 1054175056, 0, -284106842971323856, ...];
%e n=5: [1, 3124, 9758415, 30465809330, 93986716449725, 0, ...];
%e n=6: [1, 7775, 60449664, 469967719248, 3652476388472832, 28079364132086235696, 0, ...]; ...
%e in which the main diagonal is all zeros after the initial term, illustrating that [x^n] exp( n^5*x ) / A(x) = 0 for n >= 0.
%e LOGARITHMIC DERIVATIVE.
%e The logarithmic derivative of A(x) yields the o.g.f. of A304315:
%e A'(x)/A(x) = 1 + 961*x + 6737401*x^2 + 172342090401*x^3 + 11657788116175751*x^4 + 1722786509653595220757*x^5 + 489506033977061086758261063*x^6 + ... + A304315(n)*x^n +...
%e INVERT TRANSFORM.
%e 1/A(x) = 1 - x*B(x), where B(x) is the o.g.f. of A304395:
%e B(x) = 1 + 480*x + 2245320*x^2 + 43083161600*x^3 + 2331513459843750*x^4 + 287128730182879382976*x^5 + ... + A304395(n)*x^n + ...
%o (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( exp(x*(m-1)^5 +x*O(x^m)) / Ser(A) )[m] ); A[n+1]}
%o for(n=0,25, print1( a(n),", "))
%Y Cf. A304320, A304315, A304321, A304322, A304323, A304324.
%Y Cf. A304395.
%K nonn
%O 0,3
%A _Paul D. Hanna_, May 11 2018