login
A304230
T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2 or 7 king-move adjacent elements, with upper left element zero.
7
1, 2, 2, 4, 4, 4, 8, 3, 3, 8, 16, 5, 5, 5, 16, 32, 8, 6, 6, 8, 32, 64, 13, 11, 11, 11, 13, 64, 128, 21, 16, 20, 20, 16, 21, 128, 256, 34, 22, 46, 31, 46, 22, 34, 256, 512, 55, 33, 97, 89, 89, 97, 33, 55, 512, 1024, 89, 49, 189, 237, 306, 237, 189, 49, 89, 1024, 2048, 144, 71, 395
OFFSET
1,2
COMMENTS
Table starts
...1..2..4...8...16...32....64....128.....256......512.....1024......2048
...2..4..3...5....8...13....21.....34......55.......89......144.......233
...4..3..5...6...11...16....22.....33......49.......71......104.......153
...8..5..6..11...20...46....97....189.....395......836.....1701......3492
..16..8.11..20...31...89...237....494....1162.....3043.....7055.....16267
..32.13.16..46...89..306..1047...2561....7117....22405....61758....171188
..64.21.22..97..237.1047..5541..19470...72554...329358..1331161...5120619
.128.34.33.189..494.2561.19470..82029..358328..2197237.11198373..51879617
.256.55.49.395.1162.7117.72554.358328.1842555.14340995.87642095.484603179
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = a(n-1) +a(n-2) for n>4
k=3: a(n) = a(n-1) +a(n-3) for n>5
k=4: a(n) = a(n-1) +5*a(n-3) -4*a(n-6) for n>8
k=5: a(n) = a(n-1) +9*a(n-3) -14*a(n-6) for n>10
k=6: [order 12] for n>18
k=7: [order 45] for n>50
EXAMPLE
Some solutions for n=5 k=4
..0..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..1..0..1..1. .0..1..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..1..1..1..1. .0..0..1..0. .0..0..1..0. .0..0..1..0. .0..1..0..0
..1..1..1..1. .0..0..0..0. .0..1..0..0. .0..0..1..0. .0..0..1..0
..1..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
CROSSREFS
Column 1 is A000079(n-1).
Column 2 is A000045(n+1) for n>2.
Sequence in context: A115383 A219156 A210036 * A305586 A305040 A316693
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, May 08 2018
STATUS
approved