login
Number of nX7 0..1 arrays with every element unequal to 0, 1, 2 or 7 king-move adjacent elements, with upper left element zero.
1

%I #4 May 08 2018 11:06:27

%S 64,21,22,97,237,1047,5541,19470,72554,329358,1331161,5120619,

%T 21276175,87804949,349859140,1418049994,5809015813,23497185055,

%U 95020229983,386707125531,1570037273822,6360323882123,25819095718742,104839429584858

%N Number of nX7 0..1 arrays with every element unequal to 0, 1, 2 or 7 king-move adjacent elements, with upper left element zero.

%C Column 7 of A304230.

%H R. H. Hardin, <a href="/A304229/b304229.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +4*a(n-2) +46*a(n-3) +19*a(n-4) -109*a(n-5) -722*a(n-6) -341*a(n-7) +1126*a(n-8) +5123*a(n-9) +1568*a(n-10) -5121*a(n-11) -21519*a(n-12) -2459*a(n-13) +13191*a(n-14) +62645*a(n-15) -1411*a(n-16) -19872*a(n-17) -131183*a(n-18) +11058*a(n-19) +14817*a(n-20) +199024*a(n-21) -19396*a(n-22) +3061*a(n-23) -219869*a(n-24) +18700*a(n-25) -18617*a(n-26) +176698*a(n-27) -10818*a(n-28) +19827*a(n-29) -103176*a(n-30) +3867*a(n-31) -11600*a(n-32) +43519*a(n-33) -877*a(n-34) +4172*a(n-35) -13011*a(n-36) +139*a(n-37) -920*a(n-38) +2632*a(n-39) -15*a(n-40) +117*a(n-41) -330*a(n-42) -6*a(n-44) +20*a(n-45) for n>50

%e Some solutions for n=5

%e ..0..0..0..0..0..0..0. .0..0..0..0..0..0..0. .0..0..0..0..0..0..0

%e ..0..1..1..0..1..0..0. .0..1..0..0..0..1..0. .0..0..0..0..0..0..0

%e ..0..0..0..0..0..1..0. .0..0..1..0..0..1..0. .0..0..0..0..0..1..0

%e ..0..0..0..0..0..0..0. .0..0..0..0..0..0..0. .0..0..0..0..0..1..0

%e ..0..0..0..0..0..0..0. .0..0..0..0..0..0..0. .0..0..0..0..0..0..0

%Y Cf. A304230.

%K nonn

%O 1,1

%A _R. H. Hardin_, May 08 2018