login
A304205
Numbers k such that 24*k + 6 is congruent to 0 (mod 49).
1
12, 61, 110, 159, 208, 257, 306, 355, 404, 453, 502, 551, 600, 649, 698, 747, 796, 845, 894, 943, 992, 1041, 1090, 1139, 1188, 1237, 1286, 1335, 1384, 1433, 1482, 1531, 1580, 1629, 1678, 1727, 1776, 1825, 1874, 1923, 1972, 2021, 2070, 2119, 2168, 2217, 2266, 2315, 2364
OFFSET
1,1
COMMENTS
Equivalently, indices k for which A016813(k) is a multiple of 49. - Bruno Berselli, May 10 2018
Numbers k such that k == 12 (mod 49). - Joerg Arndt, May 11 2018
LINKS
Jahgwon Ju, Universal sums of generalized pentagonal numbers, arXiv:1805.03434 [math.NT], 2018, page 5 (see Case 4-1).
FORMULA
G.f.: x*(12 + 25*x - 37*x^2)/(1-x)^3.
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = 49*n - 37. - Bruno Berselli, May 11 2018
MATHEMATICA
Table[49 n - 37, {n, 1, 50}] (* Bruno Berselli, May 11 2018 *)
PROG
(Magma) [49*n-37: n in [1..50]];
CROSSREFS
Cf. A016813.
Sequence in context: A354882 A044150 A044531 * A240002 A114241 A127766
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 10 2018
STATUS
approved