login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 87*2^n - 38 (n>=0).
2

%I #20 May 11 2018 03:08:33

%S 49,136,310,658,1354,2746,5530,11098,22234,44506,89050,178138,356314,

%T 712666,1425370,2850778,5701594,11403226,22806490,45613018,91226074,

%U 182452186,364904410,729808858,1459617754,2919235546,5838471130,11676942298,23353884634,46707769306

%N a(n) = 87*2^n - 38 (n>=0).

%C a(n) is the number of vertices in the N-branched phenylacetylene NSB[n], shown pictorially in the Yarahmadi reference (for n=2).

%H Colin Barker, <a href="/A304171/b304171.txt">Table of n, a(n) for n = 0..1000</a>

%H Z. Yarahmadi and G. H. Fath-Tabar, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match65/n1/match65n1_201-208.pdf">The Wiener, Szeged, PI, Vertex PI, the first and second Zagreb indices of N-branched phenylacetylenes dendrimers</a>, MATCH: Commun. Math. Comput. Chem, 65 (2011) 201-208.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).

%F From _Colin Barker_, May 10 2018: (Start)

%F G.f.: (49 - 11*x) / ((1 - x)*(1 - 2*x)).

%F a(n) = 3*a(n-1) - 2*a(n-2) for n>1.

%F (End)

%p seq(87*2^n-38, n = 0 .. 35);

%o (PARI) Vec((49 - 11*x) / ((1 - x)*(1 - 2*x)) + O(x^30)) \\ _Colin Barker_, May 10 2018

%o (GAP) List([0..40],n->87*2^n-38); # _Muniru A Asiru_, May 10 2018

%Y Cf. A304172.

%K nonn,easy

%O 0,1

%A _Emeric Deutsch_, May 10 2018