Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Jul 03 2018 12:15:31
%S 0,1,4,20,120,996,12208,241520,8171936,491317640,53489987584,
%T 10642774095040,3891541970165760,2627082058057474240,
%U 3288629181834544457216,7666328470407977450185984,33415367571344085375628748800,273361007807597539567353971109952
%N Number of simple graphs on n vertices rooted at one oriented edge.
%C This is also the number of simple graphs rooted at an oriented non-edge.
%C The graphs do not need to be connected here; see A304072 for the connected graphs.
%H Andrew Howroyd, <a href="/A304069/b304069.txt">Table of n, a(n) for n = 1..50</a>
%F 2*a(n) = A304070(n).
%e a(3)=4: no contribution from the graph with 3 isolated nodes. 1 case of the connected graph with 2 nodes and an isolated node. 2 cases of the linear graph with 3 nodes (orientation either towards or away from the middle node). 1 case of the triangular graph.
%t permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
%t edges[v_] := Sum[GCD[v[[i]], v[[j]] ], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[#, 2]& /@ v];
%t a[n_] := If[n < 2, 0, s = 0; Do[s += permcount[p]*(2^(2*Length[p] + edges[p])), {p, IntegerPartitions[n - 2]}]; s/(n - 2)!];
%t Array[a, 18] (* _Jean-François Alcover_, Jul 03 2018, after _Andrew Howroyd_ *)
%o (PARI)
%o permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
%o edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i],v[j]))) + sum(i=1, #v, v[i]\2)}
%o a(n)= {if(n<2, 0, my(s=0); forpart(p=n-2, s+=permcount(p)*(2^(2*#p+edges(p)))); s/(n-2)!)} \\ _Andrew Howroyd_, May 06 2018
%Y Cf. A000088 (not rooted).
%K nonn
%O 1,3
%A _Brendan McKay_, May 05 2018
%E Terms a(13) and beyond from _Andrew Howroyd_, May 06 2018