%I #4 May 05 2018 15:30:26
%S 0,0,0,0,3,0,0,5,5,0,0,18,14,18,0,0,61,69,69,61,0,0,209,376,661,376,
%T 209,0,0,702,1891,5580,5580,1891,702,0,0,2381,9889,48148,79185,48148,
%U 9889,2381,0,0,8069,51283,418382,1105513,1105513,418382,51283,8069,0,0,27330
%N T(n,k)=Number of nXk 0..1 arrays with every element unequal to 2, 3, 4 or 5 king-move adjacent elements, with upper left element zero.
%C Table starts
%C .0....0......0........0..........0............0..............0................0
%C .0....3......5.......18.........61..........209............702.............2381
%C .0....5.....14.......69........376.........1891...........9889............51283
%C .0...18.....69......661.......5580........48148.........418382..........3621421
%C .0...61....376.....5580......79185......1105513.......15790468........223280583
%C .0..209...1891....48148....1105513.....25507453......598203550......13909028356
%C .0..702...9889...418382...15790468....598203550....23106300531.....882586820005
%C .0.2381..51283..3621421..223280583..13909028356...882586820005...55351295222420
%C .0.8069.265582.31403562.3167599806.324563218021.33883349300951.3491582407808941
%H R. H. Hardin, <a href="/A304065/b304065.txt">Table of n, a(n) for n = 1..180</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -2*a(n-4) -4*a(n-5) for n>6
%F k=3: [order 14] for n>16
%F k=4: [order 42] for n>43
%e Some solutions for n=5 k=4
%e ..0..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..1..0. .0..0..1..0
%e ..1..1..0..1. .0..1..0..0. .1..0..0..0. .0..1..1..0. .1..1..1..0
%e ..0..1..1..0. .1..0..1..0. .1..1..0..1. .0..0..1..0. .0..1..1..0
%e ..0..0..1..1. .0..1..0..1. .0..1..0..1. .0..1..0..0. .1..0..0..0
%e ..1..1..0..0. .0..1..1..0. .1..0..0..1. .0..1..1..1. .1..0..1..1
%Y Column 2 is A303684.
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_, May 05 2018