%I #19 Mar 26 2021 12:36:43
%S 1,1,1,5,12,93,360,3728,20160,259535,1814400,27820524,239500800,
%T 4251096402,43589145600,877606592736,10461394944000,235288904377275,
%U 3201186852864000,79476406782222500,1216451004088320000,33020655481590446318,562000363888803840000
%N Number of permutations of [n] whose up-down signature has a nonnegative total sum.
%C The up-down signature has (+1) for each ascent and (-1) for each descent.
%H Alois P. Heinz, <a href="/A304001/b304001.txt">Table of n, a(n) for n = 0..450</a>
%p b:= proc(u, o, t) option remember; (n->
%p `if`(t>=n, n!, `if`(t<-n, 0,
%p add(b(u-j, o+j-1, t-1), j=1..u)+
%p add(b(u+j-1, o-j, t+1), j=1..o))))(u+o)
%p end:
%p a:= n-> `if`(n=0, 1, add(b(j-1, n-j, 0), j=1..n)):
%p seq(a(n), n=0..25);
%p # second Maple program:
%p a:= n-> `if`(irem(n, 2, 'r')=0, ceil(n!/2),
%p add(combinat[eulerian1](n, j), j=0..r)):
%p seq(a(n), n=0..25);
%t Eulerian1[n_, k_] := If[k == 0, 1, If[n == 0, 0, Sum[(-1)^j (k - j + 1)^n Binomial[n + 1, j], {j, 0, k + 1}]]];
%t a[n_] := Module[{r, m}, {r, m} = QuotientRemainder[n, 2]; If[m == 0, Ceiling[n!/2], Sum[Eulerian1[n, j], {j, 0, r}]]];
%t a /@ Range[0, 25] (* _Jean-François Alcover_, Mar 26 2021, after 2nd Maple program *)
%Y Bisections give: A002674 (even part), A179457(2n+1,n+1) (odd part).
%Y Cf. A000246 (for nonnegative partial sums), A006551 (total sums are 0 or 1), A008292, A303287.
%K nonn
%O 0,4
%A _Alois P. Heinz_, May 04 2018