Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 May 08 2018 02:43:02
%S 1,3210,3498,3882,6453804,7873684,7943640,8028120,8099880,9112230,
%T 9561990,10079430,182626920,192651480,196192920,199939320,200271960,
%U 201632760,203289240,206367480,206645880,207815160,208955160,210368760,210406680,210717720,211645560
%N Numbers whose sum of divisors is the fifth power of one of their divisors.
%C Subset of A019423.
%e Divisors of 3210 are 1, 2, 3, 5, 6, 10, 15, 30, 107, 214, 321, 535, 642, 1070, 1605, 3210 and their sum is 7776 = 6^5.
%p with(numtheory): P:=proc(q) local a,k,n;
%p for n from 1 to q do a:=sort([op(divisors(n))]);
%p for k from 1 to nops(a) do if sigma(n)=a[k]^5 then print(n); break; fi; od; od; end: P(10^9);
%t Select[Range[10^4], IntegerQ[t = DivisorSigma[1, #]^(1/5)] && Mod[#, t] == 0 &] (* _Giovanni Resta_, May 04 2018 *)
%o (PARI) isok(n) = (n==1) || (ispower(s=sigma(n), 5) && !(n % sqrtnint(s, 5))); \\ _Michel Marcus_, May 05 2018
%Y Cf. A000203, A019423, A303123, A303993, A303994, A303996.
%K nonn
%O 1,2
%A _Paolo P. Lava_, May 04 2018
%E a(13)-a(27) from _Giovanni Resta_, May 04 2018