login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle, read by rows: n^k * k^n, for n >= 1 and k = 1..n.
3

%I #19 Sep 08 2022 08:46:21

%S 1,2,16,3,72,729,4,256,5184,65536,5,800,30375,640000,9765625,6,2304,

%T 157464,5308416,121500000,2176782336,7,6272,750141,39337984,

%U 1313046875,32934190464,678223072849,8,16384,3359232,268435456,12800000000,440301256704,12089663946752,281474976710656

%N Triangle, read by rows: n^k * k^n, for n >= 1 and k = 1..n.

%C Due to the symmetry of n^k * k^n under the exchange n <-> k, it is sufficient to consider n >= 1, and k = 1..n.

%C For the array n^k * k^n, with n >= 0 and k >= 0, read by antidiagonals, see the triangle A062275.

%C Thanks go to S. Heinemeyer for leading me to look at this.

%C The row sums give A303991.

%F T(n, k) = n^k * k^n, for n >= 1, k = 1..n.

%e The triangle T(n, k) begins:

%e ======================================================================

%e n\k | 1 2 3 4 5 6 7 ...

%e ----+-----------------------------------------------------------------

%e 1: | 1

%e 2: | 2 16

%e 3: | 3 72 729

%e 4: | 4 256 5184 65536

%e 5: | 5 800 30375 640000 9765625

%e 6: | 6 2304 157464 5308416 121500000 2176782336

%e 7: | 7 6272 750141 39337984 1313046875 32934190464 678223072849

%e ...

%e row n=8: 8, 16384, 3359232, 268435456, 12800000000, 440301256704, 12089663946752, 281474976710656;

%e row n=9: 9, 41472, 14348907, 1719926784, 115330078125, 5355700839936, 193010051319183, 5777633090469888, 150094635296999121;

%e row n=10: 10, 102400, 59049000, 10485760000, 976562500000, 60466176000000, 2824752490000000, 107374182400000000, 3486784401000000000, 100000000000000000000;

%e ...

%t Table[n^k k^n, {n, 10}, {k, n}] //Flatten (* _Vincenzo Librandi_, May 23 2018 *)

%o (Magma) /* As triangle */ [[n^k*k^n: k in [1..n]]: n in [1.. 15]]; // _Vincenzo Librandi_, May 23 2018

%o (PARI) T(n, k) = n^k * k^n;

%o tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, May 25 2018

%Y Cf. A062275, A303991.

%K nonn,tabl,easy

%O 1,2

%A _Wolfdieter Lang_, May 22 2018