login
A303983
Decimal expansion of 2*sin((37/384)*Pi).
1
5, 9, 6, 2, 0, 7, 6, 5, 0, 0, 8, 5, 4, 7, 9, 6, 8, 5, 0, 6, 9, 2, 1, 9, 4, 5, 1, 3, 5, 2, 0, 1, 3, 8, 2, 1, 7, 2, 6, 7, 6, 7, 5, 9, 9, 0, 2, 0, 0, 6, 7, 7, 0, 3, 3, 3, 1, 7, 8, 7, 9, 2, 1, 6, 4, 6, 0, 8, 4, 3, 4, 0, 4, 4, 6, 3, 0, 1, 1, 9, 7, 2, 4, 4, 4, 4, 3, 0, 2, 1, 6, 4, 3, 7, 1, 6, 2, 6, 0, 4, 1, 3, 4, 9, 6, 5
OFFSET
0,1
COMMENTS
This constant is a solution x of R(45, x) = sqrt(2 + sqrt(2 - sqrt(2 - sqrt(2 - sqrt(2 - sqrt(2)))))) = A303982, with the monic Chebyshev polynomial of the first kind, called R, with coefficients given in A127672. This polynomial with the given value appears in the historic problem (exemplum secundum) posed by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593. However, the two solutions given there (in two different printings) are incorrect. See A303982 for comments and the Vieta link.
LINKS
Adriano Romano Lovaniensi, Ideae Mathematicae, 1593.
Adriano Romano Lovaniensi, Ideae Mathematicae, 1593 [alternative link with other exemplum 2].
FORMULA
Equals sqrt(2 - sqrt(2 + sqrt(2 - sqrt(2 + sqrt(2 - sqrt(2 + sqrt(3))))))).
EXAMPLE
0.59620765008547968506921945135201382172676759902006770333178792164608434044...
MATHEMATICA
RealDigits[2*Sin[37*Pi/384], 10, 120][[1]] (* Amiram Eldar, Jun 26 2023 *)
PROG
(PARI) 2*sin(37*Pi/384) \\ Altug Alkan, May 06 2018
CROSSREFS
Sequence in context: A134879 A051158 A117605 * A073003 A344093 A087498
KEYWORD
nonn,cons,easy
AUTHOR
Wolfdieter Lang, May 04 2018
STATUS
approved