login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of different aperiodic multisets that fit within some normal multiset of size n.
4

%I #12 Feb 04 2021 16:30:43

%S 1,3,9,26,75,207,565,1518,4044,10703,28234,74277,195103,511902,

%T 1342147,3517239,9214412,24134528,63204417,165505811,433361425,

%U 1134664831,2970787794,7777975396,20363634815,53313819160,139579420528,365427311171,956707667616,2504704955181

%N Number of different aperiodic multisets that fit within some normal multiset of size n.

%C A multiset is normal if it spans an initial interval of positive integers. It is aperiodic if its multiplicities are relatively prime.

%H Andrew Howroyd, <a href="/A303976/b303976.txt">Table of n, a(n) for n = 1..500</a>

%F a(n) = Sum_{k=1..n} Sum_{d|k} mu(k/d) * Sum_{i=1..d} binomial(d-1, i-1)*binomial(n-k+i, i). - _Andrew Howroyd_, Sep 18 2018

%F G.f.: Sum_{d>=1} mu(d)*x^d/((1 - x - x^d*(2-x))*(1-x)). - _Andrew Howroyd_, Feb 04 2021

%e The a(4) = 26 aperiodic multisets:

%e (1), (2), (3), (4),

%e (12), (13), (14), (23), (24), (34),

%e (112), (113), (122), (123), (124), (133), (134), (223), (233), (234),

%e (1112), (1123), (1222), (1223), (1233), (1234).

%t allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];

%t Table[Length[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]===1&]],{n,10}]

%o (PARI) seq(n)={Vec(sum(d=1, n, moebius(d)*x^d/(1 - x - x^d*(2-x)) + O(x*x^n))/(1-x))} \\ _Andrew Howroyd_, Feb 04 2021

%Y Row sums of A303974.

%Y Cf. A000740, A000837, A007916, A027941, A178472, A210554, A301700, A303431, A303546, A303551, A303945.

%K nonn

%O 1,2

%A _Gus Wiseman_, May 03 2018

%E Terms a(13) and beyond from _Andrew Howroyd_, Sep 18 2018