login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^H(k), where H(k) is the k-th harmonic number.
5

%I #8 Sep 08 2018 05:22:41

%S 1,1,5,26,199,1599,17053,186276,2460057,34226729,537669401,8925732958,

%T 163894885735,3151342927823,65678713377873,1437541042260704,

%U 33545591623360881,819213454875992337,21170268780829522093,570252657062810041954,16139888268919495959911,475126022355752304699455,14608848314409377281498213

%N Expansion of e.g.f. Product_{k>=1} 1/(1 - x^k)^H(k), where H(k) is the k-th harmonic number.

%C a(n)/n! is the Euler transform of [1, 1 + 1/2, 1 + 1/2 + 1/3, 1 + 1/2 + 1/3 + 1/4, ...].

%H Vaclav Kotesovec, <a href="/A303970/b303970.txt">Table of n, a(n) for n = 0..436</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F E.g.f.: Product_{k>=1} 1/(1 - x^k)^(A001008(k)/A002805(k)).

%p H:= proc(n) option remember; `if`(n=0, 0, 1/n+H(n-1)) end:

%p b:= proc(n) option remember; `if`(n=0, 1, add(add(d*

%p H(d), d=numtheory[divisors](j))*b(n-j), j=1..n)/n)

%p end:

%p a:= n-> n!*b(n):

%p seq(a(n), n=0..20); # _Alois P. Heinz_, May 03 2018

%t nmax = 22; CoefficientList[Series[Product[1/(1 - x^k)^HarmonicNumber[k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!

%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d HarmonicNumber[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[n! a[n], {n, 0, 22}]

%Y Cf. A001008, A002805, A028342.

%K nonn

%O 0,3

%A _Ilya Gutkovskiy_, May 03 2018