login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Size of orbit of n under repeated application of sum of factorial of digits of n.
2

%I #43 Feb 21 2020 20:57:27

%S 2,1,1,16,8,10,15,32,36,35,2,2,17,33,13,10,15,32,36,35,17,17,9,37,7,

%T 12,6,8,33,31,33,33,37,18,34,31,48,39,24,8,13,13,7,34,30,54,42,39,29,

%U 52,10,10,12,31,54,10,24,21,41,24,15,15,6,48,42,24,12,42

%N Size of orbit of n under repeated application of sum of factorial of digits of n.

%C Numbers n for which a(n)=1 are called factorions (A014080).

%C Apart from factorions, only 3 cycles exist:

%C 169 -> 363601 -> 1454 -> 169, so a(169) = a(363601) = a(1454) = 3.

%C 871 -> 45361 -> 871, so a(871) = a(45361) = 2.

%C 872 -> 45362 -> 872, so a(872) = a(45362) = 2.

%C All other n produce a chain reaching either a factorion or a cycle.

%H Philippe Guglielmetti, <a href="/A303935/b303935.txt">Table of n, a(n) for n = 0..1000</a>

%H S. S. Gupta, <a href="http://www.jstor.org/stable/3620841">Sum of the factorials of the digits of integers</a>, The Mathematical Gazette, 88-512 (2004), 258-261.

%H Project Euler, <a href="https://projecteuler.net/problem=74">Problem 74: Digit factorial chains</a>

%e For n = 4, 4!=24, 2!+4!=26, 2!+6!=722, 7!+2!+2!=5044, 5!+0!+4!+4!=169, 1!+6!+9!=363601, 3!+6!+3!+6!+0!+1!=1454, then 1!+4!+5!+4!=169 which already belongs to the chain, so a(4) = length of [4, 24, 26, 722, 5044, 169, 363601, 1454] = 8.

%t Array[Length@ NestWhileList[Total@ Factorial@ IntegerDigits@ # &, #, UnsameQ, All, 100, -1] &, 68, 0] (* _Michael De Vlieger_, May 10 2018 *)

%o (Python)

%o for n in count(0):

%o l=[]

%o i=n

%o while i not in l:

%o l.append(i)

%o i=sum(map(factorial,map(int,str(i))))

%o print(n,len(l))

%o (PARI) f(n) = if (!n, n=1); my(d=digits(n)); sum(k=1, #d~, d[k]!);

%o a(n) = {my(v = [n], vs = Set(v)); for (k=1, oo, new = f(n); if (vecsearch(vs, new), return (#vs)); v = concat(v, new); vs = Set(v); n = new;);} \\ _Michel Marcus_, May 18 2018

%Y Cf. A061602, A014080 (contains n for which a(n) = 1).

%K nonn,base

%O 0,1

%A _Philippe Guglielmetti_, May 03 2018