login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303923
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1 + x*A(x)^n - A(x) )^n.
4
1, 1, 1, 1, 2, 6, 22, 92, 419, 2066, 10863, 60459, 354381, 2177439, 13979759, 93527819, 650509643, 4694372980, 35086564926, 271174745565, 2164066408692, 17808271012127, 150925549288155, 1315804758238582, 11787981398487995, 108409978503340041, 1022519935940220983, 9882436548778410911, 97788364370359938816
OFFSET
0,5
COMMENTS
Compare to: 1 = Sum_{n>=0} ( 1 + x*G(x)^k - G(x) )^n holds trivially for fixed k>0 when G(x) = 1 + x*G(x)^k ; this sequence explores the case when k varies with n.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ( 1 + x*A(x)^n - A(x) )^n.
(2) 1 = Sum_{n>=0} x^n * A(x)^(n^2) / (1 + (A(x)-1)*A(x)^n)^(n+1). - Paul D. Hanna, Dec 11 2018
G.f.: x/Series_Reversion( x*F(x) ) such that 1 = Sum_{n>=0} ((1 + x*F(x))^(n+1) - F(x))^n, where F(x) is the g.f. of A303924.
G.f.: sqrt( x/Series_Reversion( x*G(x)^2 ) ) such that 1 = Sum_{n>=0} ((1 + x*G(x))^(n+2) - G(x))^n, where G(x) is the g.f. of A303925.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 22*x^6 + 92*x^7 + 419*x^8 + 2066*x^9 + 10863*x^10 + 60459*x^11 + 354381*x^12 + ...
such that
1 = 1 + (1 + x*A(x) - A(x)) + (1 + x*A(x)^2 - A(x))^2 + (1 + x*A(x)^3 - A(x))^3 + (1 + x*A(x)^4 - A(x))^4 + (1 + x*A(x)^5 - A(x))^5 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ( 1 + x*Ser(A)^m - Ser(A))^m ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 03 2018
STATUS
approved