Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 May 04 2018 06:54:57
%S 1,0,1,3,3,8,12,21,34,59,93,150,242,377,595,922,1419,2171,3310,4988,
%T 7507,11218,16674,24676,36353,53295,77828,113209,163989,236736,340517,
%U 488108,697407,993350,1410455,1996968,2819280,3969260,5573541,7806141,10905640,15199138,21133212
%N Expansion of (1 - x^2)*Product_{k>=2} (1 + x^k)^k.
%C First differences of A026007.
%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F G.f.: (1 - x)*exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)).
%F a(n) ~ exp(3^(4/3) * Zeta(3)^(1/3) * n^(2/3) / 2^(4/3)) * Zeta(3)^(1/2) / (2^(13/12) * sqrt(Pi) * n). - _Vaclav Kotesovec_, May 04 2018
%t nmax = 42; CoefficientList[Series[(1 - x^2) Product[(1 + x^k)^k, {k, 2, nmax}], {x, 0, nmax}], x]
%t nmax = 42; CoefficientList[Series[(1 - x) Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]
%Y Cf. A002865, A026007, A087897, A191659, A298598, A302832.
%K nonn
%O 0,4
%A _Ilya Gutkovskiy_, May 02 2018