%I #4 May 02 2018 07:53:18
%S 1,24,36,166,487,2130,7433,30191,112815,444834,1703258,6646733,
%T 25671427,99805187,386632624,1501187933,5821487287,22593096132,
%U 87646018561,340100396970,1319526895683,5120003868457,19865539519766,77080509424841
%N Number of nX4 0..1 arrays with every element unequal to 0, 2, 3 or 4 king-move adjacent elements, with upper left element zero.
%C Column 4 of A303888.
%H R. H. Hardin, <a href="/A303884/b303884.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) +9*a(n-2) -64*a(n-3) -24*a(n-4) +324*a(n-5) +29*a(n-6) -908*a(n-7) -26*a(n-8) +1535*a(n-9) -63*a(n-10) -1059*a(n-11) -101*a(n-12) -1818*a(n-13) +615*a(n-14) +8168*a(n-15) +1142*a(n-16) -16297*a(n-17) -9152*a(n-18) +17515*a(n-19) +18762*a(n-20) -6862*a(n-21) -11642*a(n-22) -8527*a(n-23) -8707*a(n-24) +6607*a(n-25) +24394*a(n-26) +7559*a(n-27) -25005*a(n-28) -7899*a(n-29) +7951*a(n-30) +8174*a(n-31) -4288*a(n-32) -1081*a(n-33) +1247*a(n-34) -846*a(n-35) +256*a(n-36) +138*a(n-37) -60*a(n-38) for n>41
%e Some solutions for n=5
%e ..0..1..0..1. .0..0..1..0. .0..1..1..0. .0..1..1..0. .0..0..0..1
%e ..1..0..0..1. .1..1..1..1. .0..1..1..0. .1..0..0..1. .1..1..1..0
%e ..1..0..0..0. .0..1..1..0. .1..1..1..0. .0..0..0..0. .0..1..1..0
%e ..1..0..0..1. .0..0..0..1. .0..1..1..0. .1..0..0..1. .0..1..1..1
%e ..1..0..0..1. .1..0..1..0. .0..1..1..0. .0..1..0..1. .1..0..0..0
%Y Cf. A303888.
%K nonn
%O 1,2
%A _R. H. Hardin_, May 02 2018