login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways of writing n as a sum of powers of 7, each power being used at most seven times.
2

%I #19 Oct 19 2019 10:15:53

%S 1,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,

%T 1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,3,2,2,2,2,2,2,3,1,1,1,1,1,1,2,1,1,1,1,

%U 1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,3,2,2,2,2,2,2,3

%N Number of ways of writing n as a sum of powers of 7, each power being used at most seven times.

%H Seiichi Manyama, <a href="/A303825/b303825.txt">Table of n, a(n) for n = 0..10000</a>

%F G.f.: Product_{k>=0} (1-x^(8*7^k))/(1-x^(7^k)).

%F a(0)=1; for k>0, a(7*k) = a(k)+a(k-1) and a(7*k+r) = a(k) with r=1,2,3,4,5,6.

%F G.f. A(x) satisfies: A(x) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7) * A(x^7). - _Ilya Gutkovskiy_, Jul 09 2019

%p b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0,

%p add(b(n-j*7^i, i-1), j=0..min(7, n/7^i))))

%p end:

%p a:= n-> b(n, ilog[7](n)):

%p seq(a(n), n=0..120); # _Alois P. Heinz_, May 01 2018

%t m = 120; A[_] = 1;

%t Do[A[x_] = Total[x^Range[0, 7]] A[x^7] + O[x]^m // Normal, {m}];

%t CoefficientList[A[x], x] (* _Jean-François Alcover_, Oct 19 2019 *)

%o (Ruby)

%o def A(k, n)

%o ary = [1]

%o (1..n).each{|i|

%o s = ary[i / k]

%o s += ary[i / k - 1] if i % k == 0

%o ary << s

%o }

%o ary

%o end

%o p A(7, 100)

%Y Number of ways of writing n as a sum of powers of b, each power being used at most b times: A054390 (b=3), A277872 (b=4), A277873 (b=5), A303824 (b=6), this sequence (b=7).

%K nonn

%O 0,8

%A _Seiichi Manyama_, May 01 2018