login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303799
Number of nX7 0..1 arrays with every element unequal to 0, 1, 2 or 4 king-move adjacent elements, with upper left element zero.
1
64, 432, 221, 1586, 2829, 11733, 15478, 67090, 96021, 421513, 602782, 2643954, 3889941, 16782803, 25276003, 107138822, 165904207, 687475380, 1094543281, 4429929579, 7252222651, 28636327781, 48176515537, 185618761437, 320587474583
OFFSET
1,1
COMMENTS
Column 7 of A303800.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +8*a(n-2) -4*a(n-3) +19*a(n-4) -44*a(n-5) -247*a(n-6) +152*a(n-7) +18*a(n-8) +644*a(n-9) +3018*a(n-10) -2233*a(n-11) -2900*a(n-12) -4539*a(n-13) -18877*a(n-14) +17341*a(n-15) +29206*a(n-16) +16650*a(n-17) +64184*a(n-18) -79399*a(n-19) -141654*a(n-20) -27103*a(n-21) -106876*a(n-22) +223074*a(n-23) +386078*a(n-24) -7312*a(n-25) +26687*a(n-26) -396352*a(n-27) -612925*a(n-28) +103121*a(n-29) +188642*a(n-30) +475952*a(n-31) +593623*a(n-32) -215578*a(n-33) -350043*a(n-34) -399135*a(n-35) -357287*a(n-36) +290602*a(n-37) +343843*a(n-38) +206149*a(n-39) +104585*a(n-40) -257151*a(n-41) -218103*a(n-42) -44207*a(n-43) +21963*a(n-44) +149458*a(n-45) +85650*a(n-46) -19052*a(n-47) -32524*a(n-48) -52009*a(n-49) -17175*a(n-50) +18488*a(n-51) +11394*a(n-52) +6807*a(n-53) +671*a(n-54) -4551*a(n-55) -1358*a(n-56) +286*a(n-57) +117*a(n-58) +262*a(n-59) +32*a(n-60) -52*a(n-61) -2*a(n-62) +2*a(n-63) for n>71
EXAMPLE
Some solutions for n=5
..0..0..1..1..0..0..1. .0..1..1..0..0..0..0. .0..0..0..1..1..0..0
..1..1..1..1..1..1..1. .0..0..0..0..0..0..0. .1..0..0..0..0..0..0
..1..1..1..1..1..1..1. .0..0..0..0..0..0..0. .1..0..0..0..0..0..0
..0..1..1..1..1..1..1. .0..0..1..1..0..0..0. .0..0..0..0..0..0..0
..1..0..1..1..1..0..0. .1..1..1..1..1..1..0. .0..0..1..1..0..0..0
CROSSREFS
Cf. A303800.
Sequence in context: A231841 A184773 A184765 * A305244 A304478 A316303
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 30 2018
STATUS
approved