Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jun 07 2018 22:10:11
%S 1,2,6,3,15,5,10,30,210,105,35,7,14,42,21,231,77,11,22,66,33,165,55,
%T 110,330,2310,1155,385,770,154,462,6006,3003,1001,143,13,26,78,39,195,
%U 65,130,390,2730,1365,455,91,182,546,273,4641,1547,221,17,34,102,51,255,85,170,510,3570,1785,595,119,238,714,357,3927,1309,187,374,1122,561,2805,935
%N a(0) = 1, and for n >= 1, a(n) is either the largest divisor of a(n-1) not already present in the sequence, or (if all divisors already used), a(n-1) * {the least prime p such that p does not divide a(n-1) and p*a(n-1) is not already present}.
%C Each a(n+1) is either a divisor or a multiple of a(n).
%C The construction is otherwise like that of A303760, except here we choose the largest divisor instead of the smallest one. In contrast to A303760, this sequence is NOT permutation of A005117: 70 = A019565(13) is the first missing squarefree number. See also comments in A303769, A303749 and A302775.
%C Index of greatest prime factor of a(n) is monotonic and increments at n = {0, 1, 2, 4, 8, 15, 31, 50, 102, 157, 317, 480, 964, 1451, 2907, 4366, 8738, 13113, 26233, 39356, ...} - _Michael De Vlieger_, May 22 2018
%H Antti Karttunen, <a href="/A303762/b303762.txt">Table of n, a(n) for n = 0..26232</a>
%F a(n) = A019565(A303769(n)). [Conjectured]
%e From _Michael De Vlieger_, May 23 2018: (Start)
%e Table below shows the initial 31 terms at right. First column is index n. Second shows "." if a(n) = largest divisor of a(n-1), or factor p. Third shows presence "1" or absence "." of prime k among prime divisors of a(n).
%e n p\d MN(n) a(n)
%e ---------------------------
%e 0 . . 1
%e 1 2 1 2
%e 2 3 11 6
%e 3 . .1 3
%e 4 5 .11 15
%e 5 . ..1 5
%e 6 2 1.1 10
%e 7 3 111 30
%e 8 7 1111 210
%e 9 . .111 105
%e 10 . ..11 35
%e 11 . ...1 7
%e 12 2 1..1 14
%e 13 3 11.1 42
%e 14 . .1.1 21
%e 15 11 .1.11 231
%e 16 . ...11 77
%e 17 . ....1 11
%e 18 2 1...1 22
%e 19 3 11..1 66
%e 20 . .1..1 33
%e 21 5 .11.1 165
%e 22 . ..1.1 55
%e 23 2 1.1.1 110
%e 24 3 111.1 330
%e 25 7 11111 2310
%e 26 . .1111 1155
%e 27 . ..111 385
%e 28 2 1.111 770
%e 29 . 1..11 154
%e 30 3 11.11 462
%e 31 13 11.111 6006
%e ... (End)
%t Nest[Append[#, Block[{d = Divisors@ #[[-1]], p = 2}, If[Complement[d, #] != {}, Complement[d, #][[-1]], While[Nand[Mod[#[[-1]], p] != 0, FreeQ[#, p #[[-1]] ] ], p = NextPrime@ p]; p #[[-1]] ] ] ] &, {1}, 75] (* _Michael De Vlieger_, May 22 2018 *)
%o (PARI)
%o default(parisizemax,2^31);
%o up_to = 2^14;
%o A053669(n) = forprime(p=2, , if (n % p, return(p))); \\ From A053669
%o v303762 = vector(up_to);
%o m_inverses = Map();
%o prev=1; for(n=1,up_to,fordiv(prev,d,if(!mapisdefined(m_inverses,(prev/d)),v303762[n] = (prev/d);mapput(m_inverses,(prev/d),n);break)); if(!v303762[n], apu = prev; while(mapisdefined(m_inverses,try = prev*A053669(apu)), apu *= A053669(apu)); v303762[n] = try; mapput(m_inverses,try,n)); prev = v303762[n]);
%o A303762(n) = v303762[n+1];
%Y Subset of A005117.
%Y Cf. also A019565, A302774, A302775, A303749, A303769.
%Y Cf. A303760, A303761 (variants).
%K nonn
%O 0,2
%A _Antti Karttunen_, May 03 2018