login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: coefficients in the sum of odd powers as expressed by Faulhaber's theorem, T(n, k) for n >= 1, 1 <= k <= n.
2

%I #91 Dec 28 2024 11:11:24

%S 1,6,1,120,30,1,5040,1680,126,1,362880,151200,17640,510,1,39916800,

%T 19958400,3160080,168960,2046,1,6227020800,3632428800,726485760,

%U 57657600,1561560,8190,1,1307674368000,871782912000,210680870400,22313491200,988107120,14217840,32766,1

%N Triangle read by rows: coefficients in the sum of odd powers as expressed by Faulhaber's theorem, T(n, k) for n >= 1, 1 <= k <= n.

%C T(n,k) are the coefficients in an identity due to Faulhaber: Sum_{j=0..n} j^(2*m-1) = Sum_{k=1..m} T(m,k) binomial(n+k, 2*k). See the Knuth reference, page 10.

%C More explicitly, Faulhaber's theorem asserts that, given integers n >= 0, m >= 1 and odd, Sum_{k=1..n} k^m = Sum_{k=1..(m+1)/2} C(n+k,n-k)*[(1/k)*Sum_{j=0..k-1} (-1)^j*C(2*k,j)*(k-j)^(m+1)]. The coefficients T(m, k) are indicated by square brackets. Sums similar to this inner part are A304330, A304334, A304336; however, these triangles are (0,0)-based and lead to equivalent but slightly more systematic representations. - _Peter Luschny_, May 12 2018

%D John H. Conway and Richard Guy, The Book of Numbers, Springer (1996), p. 107.

%H Donald E. Knuth, <a href="https://arxiv.org/abs/math/9207222">Johann Faulhaber and Sums of Powers</a>, arXiv:9207222 [math.CA], 1992.

%H Petro Kolosov, <a href="https://kolosovpetro.github.io/pdf/PolynomialIdentitiesInvolvingCentralFactorialNumbers.pdf">Polynomial identities involving central factorial numbers</a>, GitHub, 2024. See pp. 3, 6.

%F T(n, k) = (2*(n-k)+1)!*A008957(n, k), n >= 1, 1 <= k <= n.

%F T(n, k) = (1/m)*Sum_{j=0..m} (-1)^j*binomial(2*m,j)*(m-j)^(2*n) where m = n-k+1. - _Peter Luschny_, May 09 2018

%e The triangle begins (see the Knuth reference p. 10):

%e 1;

%e 6, 1;

%e 120, 30, 1;

%e 5040, 1680, 126, 1;

%e 362880, 151200, 17640, 510, 1;

%e 39916800, 19958400, 3160080, 168960, 2046, 1;

%e 6227020800, 3632428800, 726485760, 57657600, 1561560, 8190, 1;

%e .

%e Let S(n, m) = Sum_{j=1..n} j^m. Faulhaber's formula gives for m = 7 (m odd!):

%e F(n, 7) = 5040*C(n+4, 8) + 1680*C(n+3, 6) + 126*C(n+2, 4) + C(n+1, 2).

%e Faulhaber's theorem asserts that for all n >= 1 S(n, 7) = F(n, 7).

%e If n = 43 the common value is 1600620805036.

%p T := proc(n,k) local m; m := n-k;

%p 2*(2*m+1)!*add((-1)^(j+m)*(j+1)^(2*n)/((j+m+2)!*(m-j)!), j=0..m) end:

%p seq(seq(T(n, k), k=1..n), n=1..8); # _Peter Luschny_, May 09 2018

%t (* After _Peter Luschny_'s above formula. *)

%t T[n_, k_] := (1/(n-k+1))*Sum[(-1)^j*Binomial[2*(n-k+1), j]*((n-k+1) - j)^(2*n), {j, 0, n-k+1}]; Column[Table[T[n, k], {n, 1, 10}, {k, 1, n}], Center]

%o (Sage)

%o def A303675(n, k): return factorial(2*(n-k)+1)*A008957(n, k)

%o for n in (1..7): print([A303675(n, k) for k in (1..n)]) # _Peter Luschny_, May 10 2018

%Y First column is a bisection of A000142, second column is a bisection of A001720.

%Y Row sums give A100868.

%Y Cf. A008955, A008957, A036969 and A304330, A304334, A304336.

%K nonn,tabl

%O 1,2

%A _Kolosov Petro_, May 08 2018

%E New name by _Peter Luschny_, May 10 2018