OFFSET
1,2
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..800 from Paul D. Hanna)
FORMULA
Sum_{n>=1} a(n) / 2^n = 2.
EXAMPLE
The binary expansions of Fibonacci(n)/2^n for n >= 1 begin:
.1
.01
.010
.0011
.00101
.001000
.0001101
.00010101
.000100010
.0000110111
.00001011001
.000010010000
.0000011101001
.00000101111001
.000001001100010
.0000001111011011
.00000011000111101
.000000101000011000
.0000001000001010101
.00000001101001101101
.000000010101011000010
.0000000100010100101111
.00000000110111111110001
.000000001011010100100000
.0000000010010010100010001
.00000000011101101000110001
.000000000101111111101000010
.0000000001001101100101110011
.00000000001111101100010110101
.000000000011001011001000101000
.0000000000101001000101011011101
.00000000001000010011110100000101
.000000000001101011100011111100010
.0000000000010101110000010011100111
.00000000000100011001100110011001001
.000000000000111000111101000110110000
.0000000000001011100001001111001111001
.00000000000010010101000111000000101001
.000000000000011110001010000111010100010
.0000000000000110000110010111111011001011
.00000000000001001110111101000110101101101
.000000000000001111111110000000110000111000
.0000000000000011001110101101001100110100101
.00000000000000101001110011101010010111011101
.000000000000001000011101001010011111110000010
.0000000000000001101101011100111110010101011111
.00000000000000010110001000110010010010011100001
.000000000000000100011110100011010000101001000000
.0000000000000000111001111101001100010111100100001
.00000000000000001011101110001100110011100101100001
...
the column sums of which form this sequence.
Thus, a(n) equals the number of 1-bits in column n in the binary expansions of Fibonacci(n)/2^n for n >= 1.
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 27 2018
STATUS
approved