Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Jul 22 2022 01:26:49
%S 0,0,0,0,0,1,2,2,2,2,4,3,4,5,5,5,4,4,5,4,5,9,8,6,6,9,7,6,8,8,10,8,4,8,
%T 5,7,9,12,9,6,10,9,11,10,8,16,12,8,9,12,9,11,12,11,9,10,12,14,10,10
%N Number of ways to write n as x^2 + y^2 + 2^z + 5*2^w, where x,y,z,w are nonnegative integers with x <= y.
%C Conjecture: a(n) > 0 for all n > 5.
%C This has been verified for n up to 5*10^9. Note that 321256731 cannot be written as x^2 + (2*y)^2 + 2^z + 5*2^w with x,y,z,w nonnegative integers.
%C In contrast, Crocker proved in 2008 that there are infinitely many positive integers not representable as the sum of two squares and at most two powers of 2.
%C 570143 cannot be written as x^2 + y^2 + 2^z + 3*2^w with x,y,z,w nonnegative integers, and 2284095 cannot be written as x^2 + y^2 + 2^z + 7*2^w with x,y,z,w nonnegative integers.
%C Jiao-Min Lin (a student at Nanjing University) found a counterexample to the conjecture: a(18836421387) = 0. - _Zhi-Wei Sun_, Jul 21 2022
%D R. C. Crocker, On the sum of two squares and two powers of k, Colloq. Math. 112(2008), 235-267.
%H Zhi-Wei Sun, <a href="/A303637/b303637.txt">Table of n, a(n) for n = 1..10000</a>
%H Zhi-Wei Sun, <a href="http://dx.doi.org/10.1016/j.jnt.2016.11.008">Refining Lagrange's four-square theorem</a>, J. Number Theory 175(2017), 167-190.
%H Zhi-Wei Sun, <a href="http://maths.nju.edu.cn/~zwsun/179b.pdf">New conjectures on representations of integers (I)</a>, Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1701.05868">Restricted sums of four squares</a>, arXiv:1701.05868 [math.NT], 2017-2018.
%e a(6) = 1 with 6 = 0^2 + 0^2 + 2^0 + 5*2^0.
%e a(8) = 2 with 8 = 1^2 + 1^2 + 2^0 + 5*2^0 = 0^2 + 1^2 + 2^1 + 5*2^0.
%e a(9) = 2 with 9 = 1^2 + 1^2 + 2^1 + 5*2^0 = 0^2 + 0^2 + 2^2 + 5*2^0.
%e a(10) = 2 with 10 = 0^2 + 2^2 + 2^0 + 5*2^0 = 0^2 + 1^2 + 2^2 + 5*2^0.
%t SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
%t f[n_]:=f[n]=FactorInteger[n];
%t g[n_]:=g[n]=Sum[Boole[Mod[Part[Part[f[n],i],1],4]==3&&Mod[Part[Part[f[n],i],2],2]==1],{i,1,Length[f[n]]}]==0;
%t QQ[n_]:=QQ[n]=(n==0)||(n>0&&g[n]);
%t tab={};Do[r=0;Do[If[QQ[n-5*2^k-2^m],Do[If[SQ[n-5*2^k-2^m-x^2],r=r+1],{x,0,Sqrt[(n-5*2^k-2^m)/2]}]],{k,0,Log[2,n/5]},{m,0,If[n/5==2^k,-1,Log[2,n-5*2^k]]}];tab=Append[tab,r],{n,1,60}];Print[tab]
%Y Cf. A000079, A000290, A001481, A273812, A302982, A302984, A303233, A303234, A303338, A303363, A303389, A303393, A303399, A303428, A303401, A303432, A303434, A303539, A303540, A303541, A303543, A303601, A303639, A303656.
%K nonn
%O 1,7
%A _Zhi-Wei Sun_, Apr 27 2018