%I #4 Apr 27 2018 09:53:35
%S 1,72,362,3591,37910,398859,4288358,46208517,499581127,5409406326,
%T 58631184705,635886643605,6899110045327,74869703068990,
%U 812605582421642,8820444837792716,95746681645850346,1039371314814583752
%N Number of nX5 0..1 arrays with every element equal to 0, 2, 3, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C Column 5 of A303624.
%H R. H. Hardin, <a href="/A303621/b303621.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 18*a(n-1) -88*a(n-2) +181*a(n-3) -901*a(n-4) +2154*a(n-5) -5035*a(n-6) +16596*a(n-7) -31806*a(n-8) +103835*a(n-9) -174793*a(n-10) +639689*a(n-11) -1015298*a(n-12) +2098982*a(n-13) -4679516*a(n-14) +681361*a(n-15) -12613662*a(n-16) -15526763*a(n-17) -10360518*a(n-18) -10900003*a(n-19) +93523754*a(n-20) +138980544*a(n-21) +294248039*a(n-22) +139392842*a(n-23) -25962616*a(n-24) -556388985*a(n-25) -738814401*a(n-26) -757930815*a(n-27) -359173350*a(n-28) +112140113*a(n-29) +449650391*a(n-30) +477280826*a(n-31) +290561830*a(n-32) +179957648*a(n-33) +43958819*a(n-34) +40164342*a(n-35) +66281759*a(n-36) +44868212*a(n-37) -71504876*a(n-38) -132574315*a(n-39) -159275867*a(n-40) -34904367*a(n-41) +75249340*a(n-42) +59334276*a(n-43) +13210549*a(n-44) -10299119*a(n-45) -21088861*a(n-46) -10663095*a(n-47) +6436916*a(n-48) +5938447*a(n-49) +1623325*a(n-50) -91939*a(n-51) +526515*a(n-52) +437625*a(n-53) +225322*a(n-54) +81564*a(n-55) +1567*a(n-56) +1935*a(n-57) +4592*a(n-58) -116*a(n-59) -232*a(n-60) +144*a(n-61) -64*a(n-62) for n>65
%e Some solutions for n=5
%e ..0..0..0..0..1. .0..0..0..1..1. .0..1..0..1..0. .0..1..1..1..1
%e ..0..0..1..0..0. .1..0..0..1..1. .1..1..1..1..1. .1..1..0..1..1
%e ..1..0..0..0..0. .1..0..0..1..1. .1..1..1..1..0. .1..1..1..1..1
%e ..0..0..0..0..0. .0..0..0..1..1. .0..0..0..1..1. .0..1..0..1..0
%e ..0..0..1..0..1. .0..0..1..1..0. .1..0..1..1..1. .0..1..0..1..0
%Y Cf. A303624.
%K nonn
%O 1,2
%A _R. H. Hardin_, Apr 27 2018