login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303607
a(n) = floor(C(n + 1/2)), where C = A000108.
1
0, 1, 3, 8, 24, 74, 237, 781, 2630, 9020, 31375, 110442, 392685, 1408249, 5087870, 18501347, 67662072, 248703832, 918291072, 3404396173, 12667520643, 47292077070, 177093735411, 665005047259, 2503548413211, 9447352502685, 35728169464702, 135390957971502, 514026687891806
OFFSET
0,3
COMMENTS
A000108 interleaved with this sequence gives floor(C(n/2)).
LINKS
FORMULA
a(n) ~ 2^(2*n + 1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Apr 27 2018
EXAMPLE
C(n + 1/2)*Pi gives: 2^3/3, 2^6/(3*5), 2^10/(3*5*7), 2^13/(5*7*9), 2^18/(5*7*9*11), 2^21/(7*9*11*13), 2^25/(5*7*9*11*13), ...
MAPLE
P:=proc(n) floor(evalf(binomial(2*n+1, n+1/2)/(n+3/2), 1200)); end: seq(P(i), i=0..28); # Paolo P. Lava, May 03 2018
MATHEMATICA
Table[Floor[CatalanNumber[n + 1/2]], {n, 0, 30}]
CROSSREFS
Sequence in context: A046919 A291886 A275856 * A281872 A046342 A238977
KEYWORD
nonn
AUTHOR
Bruno Berselli, Apr 27 2018
STATUS
approved