|
|
A303607
|
|
a(n) = floor(C(n + 1/2)), where C = A000108.
|
|
1
|
|
|
0, 1, 3, 8, 24, 74, 237, 781, 2630, 9020, 31375, 110442, 392685, 1408249, 5087870, 18501347, 67662072, 248703832, 918291072, 3404396173, 12667520643, 47292077070, 177093735411, 665005047259, 2503548413211, 9447352502685, 35728169464702, 135390957971502, 514026687891806
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A000108 interleaved with this sequence gives floor(C(n/2)).
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
C(n + 1/2)*Pi gives: 2^3/3, 2^6/(3*5), 2^10/(3*5*7), 2^13/(5*7*9), 2^18/(5*7*9*11), 2^21/(7*9*11*13), 2^25/(5*7*9*11*13), ...
|
|
MAPLE
|
P:=proc(n) floor(evalf(binomial(2*n+1, n+1/2)/(n+3/2), 1200)); end: seq(P(i), i=0..28); # Paolo P. Lava, May 03 2018
|
|
MATHEMATICA
|
Table[Floor[CatalanNumber[n + 1/2]], {n, 0, 30}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|