login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of chordless cycles in the n X n white bishop graph.
2

%I #20 Feb 12 2024 08:37:10

%S 0,1,3,19,97,678,5098,52170,582342,8221455,125339157,2312227461,

%T 45664819407,1056675718876,26022340062564,734233350312484,

%U 21939269071805596,738213020202917421,26196923530426606903,1032994592794340235015,42808941242555092330701

%N Number of chordless cycles in the n X n white bishop graph.

%C The chordless cycles in a bishop graph are those cycles which have at most one edge on any diagonal or antidiagonal. - _Andrew Howroyd_, Apr 29 2018

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChordlessCycle.html">Chordless Cycle</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WhiteBishopGraph.html">White Bishop Graph</a>

%F For n > 1, a(n) = A370224(n) - A370210(n).

%o (PARI)

%o SafeMat(m)={my(d=matsize(m));((j,k)->if(j>0&&j<=d[1]&&k>0&&k<=d[2], m[j,k]))}

%o CC(sig,x)={my(v=SafeMat([;]), total=0);

%o forstep(i=#sig, 2, -1, my(t=sig[i]);

%o v=SafeMat(matrix(t, t\2, j, k, v(j,k) + x*(if(j==2&&k==1, binomial(t,2)) + v(j-2,k-1)*binomial(t-j+2,2) + v(j-1,k)*2*k*(t-j+1) + v(j,k+1)*2*k*(k+1))));

%o total+=sum(j=1,t,v(j,1)) );

%o total}

%o Bishop(n, white)=vector(n-if(white, n%2, 1-n%2), i, n-i+if(white, 1-i%2, i%2));

%o a(n) = CC(Bishop(n,1),1) \\ _Andrew Howroyd_, Apr 29 2018

%Y Cf. A070968.

%Y Cf. A370210 (black bishop), A370224 (bishop).

%K nonn

%O 2,3

%A _Eric W. Weisstein_, Apr 25 2018

%E a(8)-a(22) from _Andrew Howroyd_, Apr 29 2018