login
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^3)] (1/(1 - x))*(Sum_{j>=0} x^(j^3))^k.
1

%I #4 Apr 24 2018 19:11:49

%S 1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,1,5,11,11,5,1,1,6,20,30,18,6,1,1,7,37,

%T 84,66,26,7,1,1,8,70,237,241,115,37,8,1,1,9,135,662,853,500,200,50,9,

%U 1,1,10,264,1780,2847,2093,1012,302,63,10,1,1,11,520,4536,9033,8451,4914,1769,441,80,11,1

%N Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^3)] (1/(1 - x))*(Sum_{j>=0} x^(j^3))^k.

%C A(n,k) is the number of nonnegative solutions to (x_1)^3 + (x_2)^3 + ... + (x_k)^3 <= n^3.

%H <a href="/index/Su#ssq">Index entries for sequences related to sums of cubes</a>

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 2, 3, 4, 5, 6, ...

%e 1, 3, 6, 11, 20, 37, ...

%e 1, 4, 11, 30, 84, 237, ...

%e 1, 5, 18, 66, 241, 853, ...

%e 1, 6, 26, 115, 500, 2093, ...

%t Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[x^i^3, {i, 0, n}]^k, {x, 0, n^3}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

%Y Columns k=0..4 give A000012, A000027, A224214, A224215.

%Y Main diagonal gives A303169.

%Y Cf. A290054, A302998.

%K nonn,tabl

%O 0,5

%A _Ilya Gutkovskiy_, Apr 24 2018