login
Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1

%I #4 Apr 24 2018 10:44:58

%S 8,128,1033,9110,79377,692636,6051850,52846843,461529362,4030762937,

%T 35202137794,307434409358,2684948462398,23448727446524,

%U 204787130200395,1788488024787439,15619582094687097,136412065575277095

%N Number of 4Xn 0..1 arrays with every element equal to 0, 1, 2, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

%C Row 4 of A303469.

%H R. H. Hardin, <a href="/A303471/b303471.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) +46*a(n-2) -45*a(n-3) -626*a(n-4) -454*a(n-5) +3362*a(n-6) +4834*a(n-7) -11974*a(n-8) -5100*a(n-9) +76824*a(n-10) +1064*a(n-11) -279364*a(n-12) -234634*a(n-13) -123891*a(n-14) +61518*a(n-15) +1304955*a(n-16) +1781392*a(n-17) +1362613*a(n-18) +3046799*a(n-19) +2392659*a(n-20) -3703363*a(n-21) -10637854*a(n-22) -16594164*a(n-23) -15747787*a(n-24) +1164554*a(n-25) +14083230*a(n-26) -2759852*a(n-27) -8828997*a(n-28) +23505494*a(n-29) +52936752*a(n-30) +54496267*a(n-31) +18062511*a(n-32) -48471125*a(n-33) -74206110*a(n-34) -23203749*a(n-35) +31338125*a(n-36) +28388603*a(n-37) -334667*a(n-38) -9249716*a(n-39) -2429504*a(n-40) +1208431*a(n-41) +521125*a(n-42) -3517*a(n-43) -5211*a(n-44) -12425*a(n-45) -6830*a(n-46) +132*a(n-47) +481*a(n-48) +48*a(n-49) for n>50

%e Some solutions for n=5

%e ..0..1..0..1..1. .0..1..1..1..0. .0..0..1..0..1. .0..0..0..0..1

%e ..0..0..0..1..0. .0..0..1..0..1. .1..1..0..0..1. .1..1..0..1..0

%e ..0..0..0..0..0. .0..0..1..0..0. .1..1..0..1..1. .1..1..1..1..0

%e ..0..1..0..1..1. .0..1..1..0..0. .1..1..0..0..1. .0..1..0..1..1

%Y Cf. A303469.

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 24 2018