Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Apr 21 2018 12:48:28
%S 1,2,2,3,3,4,5,3,4,8,8,5,12,6,16,13,7,17,11,9,32,21,13,24,36,19,14,64,
%T 34,23,67,50,74,34,22,128,55,37,158,128,139,165,53,35,256,89,63,298,
%U 439,410,349,361,83,56,512,144,109,595,1085,1799,1221,853,783,136,90,1024,233
%N T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1, 4, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
%C Table starts
%C ...1..2...3....5....8....13.....21......34.......55........89........144
%C ...2..3...3....5....7....13.....23......37.......63.......109........183
%C ...4..4..12...17...24....67....158.....298......595......1337.......2863
%C ...8..6..11...36...50...128....439....1085.....2431......6452......17455
%C ..16..9..19...74..139...410...1799....5907....16494.....53290.....184915
%C ..32.14..34..165..349..1221...7096...30280...102683....403872....1783894
%C ..64.22..53..361..853..3453..26184..148313...618149...2955145...16591424
%C .128.35..83..783.2180.10223.100128..746323..3851318..22515378..159560449
%C .256.56.136.1710.5525.30247.387892.3784002.23967605.171306353.1539204838
%H R. H. Hardin, <a href="/A303314/b303314.txt">Table of n, a(n) for n = 1..511</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1)
%F k=2: a(n) = 2*a(n-1) -a(n-3)
%F k=3: a(n) = a(n-1) +a(n-3) +a(n-4) for n>7
%F k=4: a(n) = a(n-1) +a(n-2) +3*a(n-3) +2*a(n-4) -a(n-5) -2*a(n-6) -a(n-7) for n>10
%F k=5: a(n) = a(n-1) +9*a(n-3) +2*a(n-4) +4*a(n-5) -10*a(n-6) -6*a(n-7) +4*a(n-9) for n>12
%F k=6: [order 8] for n>11
%F k=7: [order 20] for n>23
%F Empirical for row n:
%F n=1: a(n) = a(n-1) +a(n-2)
%F n=2: a(n) = a(n-1) +2*a(n-3) for n>5
%F n=3: a(n) = a(n-1) +3*a(n-3) +4*a(n-4) for n>7
%F n=4: a(n) = a(n-1) +a(n-2) +5*a(n-3) +9*a(n-4) -3*a(n-5) -7*a(n-6) -2*a(n-7) for n>11
%F n=5: [order 12] for n>16
%F n=6: [order 23] for n>28
%F n=7: [order 46] for n>51
%e Some solutions for n=5 k=4
%e ..0..1..0..0. .0..1..1..1. .0..0..0..1. .0..1..0..0. .0..1..0..1
%e ..0..1..1..1. .0..1..0..1. .0..1..0..1. .0..1..1..1. .0..1..1..1
%e ..0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
%e ..0..1..0..1. .0..1..0..1. .0..0..0..1. .0..1..0..1. .0..1..0..1
%e ..0..0..0..1. .0..0..0..1. .1..1..0..1. .0..1..0..1. .0..1..0..1
%Y Column 1 is A000079(n-1).
%Y Column 2 is A001611(n+1).
%Y Row 1 is A000045(n+1).
%Y Row 2 is A003229(n-1) for n>2.
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_, Apr 21 2018