Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Mar 01 2022 05:33:37
%S 0,1,19,22,58,63,117,124,196,205,295,306,414,427,553,568,712,729,891,
%T 910,1090,1111,1309,1332,1548,1573,1807,1834,2086,2115,2385,2416,2704,
%U 2737,3043,3078,3402,3439,3781,3820,4180,4221,4599,4642,5038,5083,5497,5544,5976,6025,6475,6526,6994,7047,7533,7588
%N Generalized 22-gonal (or icosidigonal) numbers: m*(10*m - 9) with m = 0, +1, -1, +2, -2, +3, -3, ...
%C Partial sums of A317318. - _Omar E. Pol_, Jul 28 2018
%C Exponents in expansion of Product_{n >= 1} (1 + x^(20*n-19))*(1 + x^(20*n-1))*(1 - x^(20*n)) = 1 + x + x^19 + x^22 + x^58 + .... - _Peter Bala_, Dec 10 2020
%H Colin Barker, <a href="/A303299/b303299.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%F From _Colin Barker_, Jun 23 2018: (Start)
%F G.f.: x*(1 + 18*x + x^2) / ((1 - x)^3*(1 + x)^2).
%F a(n) = (5*n^2 + 9*n)/2 for n even.
%F a(n) = (5*n^2 + n - 4)/2 for n odd.
%F a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
%F (End)
%F Sum_{n>=1} 1/a(n) = (10 + 9*sqrt(5+2*sqrt(5))*Pi)/81. - _Amiram Eldar_, Mar 01 2022
%p a:= n-> (m-> m*(10*m-9))(-ceil(n/2)*(-1)^n):
%p seq(a(n), n=0..60); # _Alois P. Heinz_, Jun 23 2018
%t CoefficientList[ Series[-x (x^2 + 18x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 19, 22, 58}, 51] (* _Robert G. Wilson v_, Jul 28 2018 *)
%t nn=30; Sort[Table[n (10 n - 9), {n, -nn, nn}]] (* _Vincenzo Librandi_, Jul 29 2018 *)
%o (PARI) a(n) = n++; my(m = (-1) ^ n * (n >> 1)); m * (10 * m - 9) \\ _David A. Corneth_, Jun 23 2018
%o (PARI) concat(0, Vec(x*(1 + 18*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^60))) \\ _Colin Barker_, Jun 23 2018
%Y Cf. A051874, A317318.
%Y Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), this sequence (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
%K nonn,easy
%O 0,3
%A _Omar E. Pol_, Jun 23 2018