Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 May 18 2018 12:13:28
%S 1,1,1,1,2,2,1,3,4,4,1,4,6,7,7,1,5,8,10,11,11,1,6,10,13,15,16,16,1,7,
%T 12,16,19,21,22,22,1,8,14,19,23,26,28,29,29,1,9,16,22,27,31,34,36,37,
%U 37,1,10,18,25,31,36,40,43,45,46,46,1,11,20,28,35,41
%N Array T(n,k) = binomial(n, 2) + k*n + 1 read by antidiagonals.
%C Columns are linear recurrence sequences with signature (3,-3,1).
%C 8*T(n,k) + A166147(k-1) are squares.
%C Columns k are binomial transforms of [1, k, 1, 0, 0, 0, ...].
%C Antidiagonals sums yield A116731.
%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, Addison-Wesley, 1994.
%F G.f.: (3*x^2*y - 3*x*y + y - 2*x^2 + 2*x - 1)/((x - 1)^3*(y - 1)^2).
%F E.g.f.: (1/2)*(2*x*y + x^2 + 2)*exp(y + x).
%F T(n,k) = 3*T(n-1,k) - 3*T(n-2,k) + T(n-3,k), with T(0,k) = 1, T(1,k) = k + 1 and T(2,k) = 2*k + 2.
%F T(n,k) = T(n-1,k) + n + k - 1.
%F T(n,k) = T(n,k-1) + n, with T(n,0) = 1.
%F T(n,0) = A152947(n+1).
%F T(n,1) = A000124(n).
%F T(n,2) = A000217(n).
%F T(n,3) = A034856(n+1).
%F T(n,4) = A052905(n).
%F T(n,5) = A051936(n+4).
%F T(n,6) = A246172(n+1).
%F T(n,7) = A302537(n).
%F T(n,8) = A056121(n+1) + 1.
%F T(n,9) = A056126(n+1) + 1.
%F T(n,10) = A051942(n+10) + 1, n > 0.
%F T(n,11) = A101859(n) + 1.
%F T(n,12) = A132754(n+1) + 1.
%F T(n,13) = A132755(n+1) + 1.
%F T(n,14) = A132756(n+1) + 1.
%F T(n,15) = A132757(n+1) + 1.
%F T(n,16) = A132758(n+1) + 1.
%F T(n,17) = A212427(n+1) + 1.
%F T(n,18) = A212428(n+1) + 1.
%F T(n,n) = A143689(n) = A300192(n,2).
%F T(n,n+1) = A104249(n).
%F T(n,n+2) = T(n+1,n) = A005448(n+1).
%F T(n,n+3) = A000326(n+1).
%F T(n,n+4) = A095794(n+1).
%F T(n,n+5) = A133694(n+1).
%F T(n+2,n) = A005449(n+1).
%F T(n+3,n) = A115067(n+2).
%F T(n+4,n) = A133694(n+2).
%F T(2*n,n) = A054556(n+1).
%F T(2*n,n+1) = A054567(n+1).
%F T(2*n,n+2) = A033951(n).
%F T(2*n,n+3) = A001107(n+1).
%F T(2*n,n+4) = A186353(4*n+1) (conjectured).
%F T(2*n,n+5) = A184103(8*n+1) (conjectured).
%F T(2*n,n+6) = A250657(n-1) = A250656(3,n-1), n > 1.
%F T(n,2*n) = A140066(n+1).
%F T(n+1,2*n) = A005891(n).
%F T(n+2,2*n) = A249013(5*n+4) (conjectured).
%F T(n+3,2*n) = A186384(5*n+3) = A186386(5*n+3) (conjectured).
%F T(2*n,2*n) = A143689(2*n).
%F T(2*n+1,2*n+1) = A143689(2*n+1) (= A030503(3*n+3) (conjectured)).
%F T(2*n,2*n+1) = A104249(2*n) = A093918(2*n+2) = A131355(4*n+1) (= A030503(3*n+5) (conjectured)).
%F T(2*n+1,2*n) = A085473(n).
%F a(n+1,5*n+1)=A051865(n+1) + 1.
%F a(n,2*n+1) = A116668(n).
%F a(2*n+1,n) = A054569(n+1).
%F T(3*n,n) = A025742(3*n-1), n > 1 (conjectured).
%F T(n,3*n) = A140063(n+1).
%F T(n+1,3*n) = A069099(n+1).
%F T(n,4*n) = A276819(n).
%F T(4*n,n) = A154106(n-1), n > 0.
%F T(2^n,2) = A028401(n+2).
%F T(1,n)*T(n,1) = A006000(n).
%F T(n*(n+1),n) = A211905(n+1), n > 0 (conjectured).
%F T(n*(n+1)+1,n) = A294259(n+1).
%F T(n,n^2+1) = A081423(n).
%F T(n,A000217(n)) = A158842(n), n > 0.
%F T(n,A152947(n+1)) = A060354(n+1).
%F floor(T(n,n/2)) = A267682(n) (conjectured).
%F floor(T(n,n/3)) = A025742(n-1), n > 0 (conjectured).
%F floor(T(n,n/4)) = A263807(n-1), n > 0 (conjectured).
%F ceiling(T(n,2^n)/n) = A134522(n), n > 0 (conjectured).
%F ceiling(T(n,n/2+n)/n) = A051755(n+1) (conjectured).
%F floor(T(n,n)/n) = A133223(n), n > 0 (conjectured).
%F ceiling(T(n,n)/n) = A007494(n), n > 0.
%F ceiling(T(n,n^2)/n) = A171769(n), n > 0.
%F ceiling(T(2*n,n^2)/n) = A046092(n), n > 0.
%F ceiling(T(2*n,2^n)/n) = A131520(n+2), n > 0.
%e The array T(n,k) begins
%e 1 1 1 1 1 1 1 1 1 1 1 1 1 ... A000012
%e 1 2 3 4 5 6 7 8 9 10 11 12 13 ... A000027
%e 2 4 6 8 10 12 14 16 18 20 22 24 26 ... A005843
%e 4 7 10 13 16 19 22 25 28 31 34 37 40 ... A016777
%e 7 11 15 19 23 27 31 35 39 43 47 51 55 ... A004767
%e 11 16 21 26 31 36 41 46 51 56 61 66 71 ... A016861
%e 16 22 28 34 40 46 52 58 64 70 76 82 88 ... A016957
%e 22 29 36 43 50 57 64 71 78 85 92 99 106 ... A016993
%e 29 37 45 53 61 69 77 85 93 101 109 117 125 ... A004770
%e 37 46 55 64 73 82 91 100 109 118 127 136 145 ... A017173
%e 46 56 66 76 86 96 106 116 126 136 146 156 166 ... A017341
%e 56 67 78 89 100 111 122 133 144 155 166 177 188 ... A017401
%e 67 79 91 103 115 127 139 151 163 175 187 199 211 ... A017605
%e 79 92 105 118 131 144 157 170 183 196 209 222 235 ... A190991
%e ...
%e The inverse binomial transforms of the columns are
%e 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
%e 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
%e 1 1 1 1 1 1 1 1 1 1 1 1 1 ...
%e 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
%e 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
%e 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
%e ...
%e T(k,n-k) = A087401(n,k) + 1 as triangle
%e 1
%e 1 1
%e 1 2 2
%e 1 3 4 4
%e 1 4 6 7 7
%e 1 5 8 10 11 11
%e 1 6 10 13 15 16 16
%e 1 7 12 16 19 21 22 22
%e 1 8 14 19 23 26 28 29 29
%e 1 9 16 22 27 31 34 36 37 37
%e 1 10 18 25 31 36 40 43 45 46 46
%e ...
%p T := (n, k) -> binomial(n, 2) + k*n + 1;
%p for n from 0 to 20 do seq(T(n, k), k = 0 .. 20) od;
%t Table[With[{n = m - k}, Binomial[n, 2] + k n + 1], {m, 0, 11}, {k, m, 0, -1}] // Flatten (* _Michael De Vlieger_, Apr 21 2018 *)
%o (Maxima)
%o T(n, k) := binomial(n, 2)+ k*n + 1$
%o for n:0 thru 20 do
%o print(makelist(T(n, k), k, 0, 20));
%o (PARI) T(n,k) = binomial(n, 2) + k*n + 1;
%o tabl(nn) = for (n=0, nn, for (k=0, nn, print1(T(n, k), ", ")); print); \\ _Michel Marcus_, May 17 2018
%Y Cf. A085475, A086270, A086271, A086272, A086273, A130154, A159798, A162609, A162610, A300401.
%K nonn,tabl
%O 0,5
%A _Franck Maminirina Ramaharo_, Apr 20 2018