login
Number of nX5 0..1 arrays with every element equal to 0, 1, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.
1

%I #4 Apr 19 2018 13:34:37

%S 8,25,43,97,523,1751,5573,21575,76833,266179,971949,3482591,12336431,

%T 44409867,159182895,567732335,2035296081,7291955435,26069806559,

%U 93348365103,334298657839,1196193957779,4282016007317,15330901431591

%N Number of nX5 0..1 arrays with every element equal to 0, 1, 3, 5 or 6 horizontally, diagonally or antidiagonally adjacent elements, with upper left element zero.

%C Column 5 of A303197.

%H R. H. Hardin, <a href="/A303194/b303194.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) +a(n-2) +42*a(n-3) -52*a(n-4) -36*a(n-5) -601*a(n-6) +494*a(n-7) +501*a(n-8) +3674*a(n-9) -2252*a(n-10) -3728*a(n-11) -9746*a(n-12) +7102*a(n-13) +11972*a(n-14) +9668*a(n-15) -12696*a(n-16) -18552*a(n-17) -2516*a(n-18) +14464*a(n-19) +17480*a(n-20) +2144*a(n-21) -23696*a(n-22) -4528*a(n-23) +3152*a(n-24) +13280*a(n-25) -7136*a(n-26) -768*a(n-27) +7936*a(n-28) +768*a(n-29) +384*a(n-30) -5120*a(n-31) -256*a(n-32) +2048*a(n-33) for n>37

%e Some solutions for n=5

%e ..0..1..0..1..0. .0..1..0..1..0. .0..1..0..0..1. .0..1..0..0..1

%e ..0..0..0..1..0. .0..0..0..1..0. .0..1..0..1..0. .1..0..0..0..0

%e ..1..1..0..1..0. .0..1..0..1..0. .0..1..0..1..0. .1..0..1..0..1

%e ..1..0..1..0..0. .0..1..0..1..1. .0..1..0..0..1. .1..0..1..0..0

%e ..1..0..1..1..1. .1..0..0..1..0. .0..0..1..0..1. .1..0..1..0..1

%Y Cf. A303197.

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 19 2018