%I #8 Aug 21 2018 08:04:48
%S 1,1,1,7,9,23,148,221,526,1040,6767,9664,23456,43943,91363,499028,
%T 736410,1650395,3107540,6210372,10819270,57864166,80663444,179915133,
%U 324882691,640398244,1087149284,2039724322,9121580902,12913282685,27250167385,48645989650,92634730208,156124357449
%N a(n) = [x^n] Product_{k=1..n} (1 + (n - k + 1)*x^k).
%H Vaclav Kotesovec, <a href="/A303188/b303188.txt">Table of n, a(n) for n = 0..500</a>
%e a(0) = 1;
%e a(1) = [x^1] (1 + x) = 1;
%e a(2) = [x^2] (1 + 2*x)*(1 + x^2) = 1;
%e a(3) = [x^3] (1 + 3*x)*(1 + 2*x^2)*(1 + x^3) = 7;
%e a(4) = [x^4] (1 + 4*x)*(1 + 3*x^2)*(1 + 2*x^3)*(1 + x^4) = 9;
%e a(5) = [x^5] (1 + 5*x)*(1 + 4*x^2)*(1 + 3*x^3)*(1 + 2*x^4)*(1 + x^5) = 23, etc.
%e ...
%e The table of coefficients of x^k in expansion of Product_{k=1..n} (1 + (n - k + 1)*x^k) begins:
%e n = 0: (1), 0, 0, 0, 0, 0, ...
%e n = 1: 1, (1), 0, 0, 0, 0, ...
%e n = 2: 1, 2, (1), 2, 0, 0 ...
%e n = 3: 1, 3, 2, (7), 3, 2, ...
%e n = 4: 1, 4, 3, 14, (9), 10, ...
%e n = 5: 1, 5, 4, 23, 17, (23), ...
%t Table[SeriesCoefficient[Product[(1 + (n - k + 1) x^k), {k, 1, n}], {x, 0, n}], {n, 0, 33}]
%Y Cf. A022629, A206229, A291698, A303175, A303189, A303190.
%K nonn
%O 0,4
%A _Ilya Gutkovskiy_, Apr 19 2018