login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303131 Expansion of Product_{n>=1} (1 + (16*x)^n)^(-1/4). 5
1, -4, -24, -1248, 1632, -267136, -669440, -56925184, 597165568, -19934894080, 61831327744, -3209599664128, 47593545383936, -840449808072704, 8113679782510592, -350055154021040128, 5703847053344768000, -57129722970675609600, 704939718429511778304 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/4, g(n) = -16^n.

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..500

FORMULA

a(n) ~ (-1)^n * exp(Pi*sqrt(n/24)) * 2^(4*n - 9/4) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 20 2018

MATHEMATICA

CoefficientList[Series[(2/QPochhammer[-1, 16*x])^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 20 2018 *)

CROSSREFS

Expansion of Product_{n>=1} (1 + ((b^2)*x)^n)^(-1/b): A081362 (b=1), A298993 (b=2), A303130 (b=3), this sequence (b=4), A303132 (b=5).

Cf. A303124, A303135.

Sequence in context: A024251 A193484 A024252 * A012124 A108185 A110972

Adjacent sequences:  A303128 A303129 A303130 * A303132 A303133 A303134

KEYWORD

sign

AUTHOR

Seiichi Manyama, Apr 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 6 11:37 EDT 2022. Contains 355110 sequences. (Running on oeis4.)