login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Balanced primes of order one ending in 7.
3

%I #10 May 26 2018 22:22:12

%S 157,257,607,947,977,1187,1367,1747,1907,2287,2417,2677,3307,3637,

%T 4457,4597,4657,5107,5387,5807,6317,6367,6977,8117,8747,9397,10607,

%U 10657,11497,11807,12497,12547,12647,13177,13457,14747,15467,15767,15797,15907,16097

%N Balanced primes of order one ending in 7.

%e 157 = (151 + 157 + 163)/3 = 471/3 and 157 = 15*10 + 7.

%p p:=ithprime: a:=n->`if`(add(p(n-k),k=-1..1)=3*p(n) and modp(p(n), 10) = 7,p(n),NULL): seq(a(n),n=3..2000);

%o (GAP) P:=Filtered([1..16200],IsPrime);;

%o a:=Filtered(List(Filtered(List([0..Length(P)-3],k->List([1..3],j->P[j+k])),i->Sum(i)/3=i[2]),m->m[2]),l-> l mod 10=7);

%Y Intersection of A006562 and A030432.

%Y Cf. A303092, A303093, A303095.

%K nonn,base

%O 1,1

%A _Muniru A Asiru_, Apr 18 2018