login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Unitary highly composite deficient numbers: unitary deficient numbers k whose number of unitary divisors ud(k) > ud(m) for all unitary deficient numbers m < k.
0

%I #11 Jul 21 2021 00:44:21

%S 1,2,10,84,1155,25740,471240,14549535,535422888

%N Unitary highly composite deficient numbers: unitary deficient numbers k whose number of unitary divisors ud(k) > ud(m) for all unitary deficient numbers m < k.

%C The record numbers of unitary divisors are 1, 2, 4, 8, 16, 32, 64, 128, 256, ...

%C The unitary version of A302934.

%t usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; udiv[n_] := 2^PrimeNu[n]; dm = 0; Do[sig = usigma[n]; If[sig >= 2 n, Continue[]]; d = udiv[n]; If[d > dm, Print[n]; dm = d], {n, 1, 1000000000}]

%o (PARI) nbud(n) = 1<<omega(n);

%o usigma(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d));

%o lista(nn) = {my(maxd = 0); for(n=1, nn, if ((usigma(n) < 2*n) && (nbud(n) > maxd), print1(n, ", "); maxd = nbud(n);););} \\ _Michel Marcus_, Apr 17 2018

%Y Cf. A034444, A034448, A129487, A302934.

%K nonn,more

%O 1,2

%A _Amiram Eldar_, Apr 16 2018